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ABSTRACT 

With the rise of malware in the current times it becomes easier for malware to disguise itself, which in turn makes it 

difficult for systems to recognize and eliminate them. Malware can be different types and can also use different 

techniques to target a system. Different malware types have different functions and can harm our systems in a lot of 

different ways which include encrypting our data files, stealing our private data or can be used to spy on us. In 

modern times Machine learning plays an important role in detecting and eliminating this malware from our system. 
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Introduction   

Malware can be really harmful and is spreading at an extremely fast rate. To fight this problem of malware detection 

we have used Machine Learning models on a huge dataset of 250 GB provided by Microsoft to classify and detect 9 

classes of malware (Lollipop, Kelihos_ver3,Vundo,Simda,Tracur,Kelihos_ver1,Obfuscator.ACY, Gatak) 

The dataset consists of two types of files, .asm files and .byte files. Our aim was to extract features from both .asm 

and .byte files using various feature engineering methods to create effective classifiers using basic multiple machine 

learning techniques such as K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and XGBoost to find 

the best and most effective way of detecting malware with the best accuracy. 

 

Techniques & Algorithms Used  

We are dealing with a classification problem of the Malwares based on different attributes of .asm files and .byte 

file’s dataset. We are using various Machine Learning algorithm for the process. 

1. Random Model 

2. Logistic Regression 

3. KNN 

4. Random Forest 

5. XG Boost 
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A. Random Model 

Initially we will create a random model in which all the malware will be classified data points in any category. This 

is done in order to find the baseline. On this baseline other models will be compared to. Any model which performs 

worse than the random model will not be considered. Using any model less efficient than the random model is a 

waste of time as selecting data points randomly is a safer bet than using that model [6]. 

 B. Logistic regression 

The logistic regression model is used to find categorical predictors. The results of this model are predicted by the 

probability of occurrence of an event. Logistic regression model uses a logit function in order to categorically divide 

data points into the correct category.   

C. KNN         

KNN is also called the K Nearest Neighbor model. It is used as a classification predictor. K is the value of the 

nearest neighbors. In the KNN model the category of a data point is decided by the category of the nearest data point 

it resembles, according to the Euclidean distance. The data points are more likely to be like the data points which it 

is surrounded by as it shows a similar trend. 

D. Random Forest 

Random forest is an ensemble model. An ensemble model is where we run several models to get the result. In 

Random Forest we combine the result of all the decision trees and then decide the category of the data point. 

Category of the data point is chosen which has the most votes in all the decision trees.    

E. XG Boost 

XG Boost is a highly efficient library which is based on a distributed gradient boosting framework. The flexibility 

and efficiency make it useful. It can run multiple trees parallelly to boost the outcome and can provide extraordinary 

results in multiple problems. 

 

Related Work 

Many real-time applications employ the above-mentioned machine learning algorithms and models. The following 

are some of these applications: 

A. K Nearest Neighbors 

KNN may outperform more sophisticated classifiers despite its simplicity, and it is employed in a range of 

applications such as economic forecasting, data compression, genetics, and so on. For example, in 2006 research on 

functional genomics, KNN was used to assign genes based on their expression profiles. 

B. Logistic Regression    

A statistical strategy for predicting binary classes is logistic regression. It can calculate the likelihood of an event 

occurring and thus, has applications in Image Segmentation and Categorization, Cancer Detection, Geographic 

Image Processing, etc. 
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C.  Random Forest 

It is a classification, regression, and other task-solving method based on the construction of a large number of 

decision trees. Random forest is a machine learning algorithm that can be used for medical diagnosis, stock market 

analysis, and e-commerce, among other things. 

D.  XGBoost 

It's a gradient boosting-based ensemble learning system based on decision trees. It has had many real-world 

applications such as being used by CERN to classify signals from the LHC. It was also used in hourly prediction of 

PM 2.5 particles in China. 

 

Methodology 

We'd be working with a dataset that contains nine different types of malwares that we'd have to categorize for each 

data point. Since there are 9 classes, we could map this to a multi class classification problem in Machine Learning. 

 

  

Fig 1. Workflow Diagram 

In general, the first stage is data pre-processing which includes data loading, data analysis, exploratory data analysis 

and vectorization as shown in Fig 1. 

 

In exploratory data analysis the first thing that we do is separate byte files and asm files into different folders to 

maintain hierarchy. To understand whether the problem belongs to balanced or imbalanced data we have plotted 

histograms, box plots, T-sne. Through these plots we can comprehend whether our data is an imbalanced data set. 

Following this we would do feature engineering to know if there’s any useful information from the dataset. 
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Fig 2. Distribution of Malware in the whole dataset 

In Fig 2, feature engineering is done based on the size of files and to configure the size of each file, then using that 

file size we would conclude whether that would be useful or not.  

Boxplots help in distinguishing some classes as well. Now we will convert all the hexadecimal files into text data by 

using Uni-Grams and we would be implementing the Uni Gram with our own bag of words. There is another 

approach we could convert into text data with “Count Vectorizer” but the problem is in this use-case the data is not 

available in main memory. This is because storing very huge (GB’s) data in main memory is not a good idea here. 

After that we will do simple column normalization. Now for each file we have file size and bag of words as features. 

 

After that we will perform feature extraction on byte files by converting them into text files by using a technique 

like Bag of words. Using T-SNE, we saw that our features are somewhat useful because they have nice grouping [2]. 

 

We divided our data into train (64%), test (20%) and cross-validation (16%) randomly. Let’s check how the 

distribution classes are done in train, test and cross-validation. Modeling is done on both byte and .asm files, while 

modeling we use random models like random models, logistic regression, KNN, Random forests and XGBoost and 

then compare the log-loss of each and then decide whether it’s a good model since log-loss is like threshold. In 

general, the multi log-loss has minimum value ‘0’ and maximum value is ‘Infinity’. 

 

Performance Metrics 

After doing the standard feature extraction, model selection, and implementation, and receiving a probability output, 

the next critical step is to determine the model's effectiveness using test datasets. Models can be evaluated using a 

variety of performance metrics. 
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A. Log loss 

The performance of a classification model with a prediction input of a probability between 0 and 1 is measured by 

logarithmic loss (log loss). As the anticipated probability diverges from the actual label, log loss grows. The purpose 

of models is to reduce this value as much as possible. As a result, a lower log loss is preferable, with a log loss of 0 

indicating a flawless model. 

B. Confusion Matrix 

Multiclass classification is a method of examining the performance of a classification issue where the output can be 

of two or more forms of classes. A confusion matrix is a table having two dimensions: "Actual" and "Predicted," as 

well as "True Positives (TP)," "True Negatives (TN)," "False Positives (FP)," and "False Negatives (FN)" on both 

dimensions. We have used three types of performance metrics in order to evaluate our models that are classification 

accuracy, precision and recall as shown in Fig 3. 

 

 

Fig 3. Confusion Matrix 

The most frequent performance metric for multi-class classification algorithms is classification accuracy. It's the 

number of right guesses divided by the total number of predictions. To compute the accuracy of our classification 

model, we may use the accuracy score function in the sklearn.metrics library. Precision is employed in document 

retrieval and is defined as the number of right documents returned by our machine learning model, whereas recall is 

defined as the number of positives returned by our machine learning model. 

  

Implementation 

There are various types of malwares in the dataset. We must classify the dataset using the nine classes that we 

described earlier.  

A. Feature Extraction 

The given dataset consisted of 2 file types namely .asm and .byte.  The .byte files were evaluated for their file size 

and we observed that class 2 and class 5 are well separated when compared to others. Also, the file sizes are 

different for each class as shown in the Fig 4 [4].  
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Fig 4. Boxplot of .byte file sizes 

Now, all the hexadecimal values present in .byte files are converted into text data by using Unigrams. This converts 

the .byte files into a bag of words so that we can calculate frequency distribution of different hexadecimal values [7]. 

Thus, each .byte file has 257 features which include 256 hexadecimals and file size. 

The evaluation on .asm files led us to select 52 features for their classification based on many references. These 52 

features are different opcodes used in assembly language most frequently [3]. 

B. Random Model 

Random Model is a model created by us which classifies the files randomly into any one of the 9 malware classes. 

This model was created to calculate the worst-case value of log loss that can be possible if we classify malware 

randomly. The log Loss value given by this model is taken as a threshold for other models and it makes it easier to 

compare the efficiency of other models [6]. 

C. K Nearest Neighbors 

The k-nearest neighbors (KNN) technique is a straightforward supervised machine learning algorithm for solving 

classification issues. Here, we built a KNN model to classify .byte files as well as .asm files separately. The models 

were used to classify the given malware into their classes. The model made errors were not very accurate [5]. 

D. Logistic Regression 

The logistic sigmoid function produces a probability value using the logistic regression algorithm, which is 

commonly used to handle categorical data. Our LR model classifies files into classes 1 to 9. This model compared to 

KNN performs worse. 

E. Random Forest 

Learning algorithms based on trees are considered to be one of the most popular and effective supervised learning 

methods. To produce a more reliable and accurate forecast, a random forest algorithm constructs numerous decision 

trees and blends them together. The random forest classifier here gives the best results compared to KNN and LR 

models 

F. XGBoost 

It is based on ensemble learning and stands for extreme gradient boosting. The XGBoost model also implements 

decision trees and works best to classify the malware files producing the lowest error from all used models.. 
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Result Analysis 

These are the benchmarks which we got after applying various feature extraction techniques and using different 

machine learning models. 

A. .byte Files  

Models LOG LOSS Misclassification Error 

Random Model 2.45 88% 

K Nearest Neighbors 0.24 4.50% 

Logistic Regression 0.528 12.32% 

Random Forest 0.085 2.02% 

XGBoost 0.070 1.24 

Table I. Result of .byte files 

B. .asm files 

Models LOG LOSS Misclassification Error 

K Nearest Neighbors 0.089 2.02% 

Logistic Regression 0.415 9.16% 

Random Forest 0.057 1.15% 

XGBoost 0.048 0.87% 

      Table II. Result of .asm files 

C. Merged Features of both .asm files & .byte files 

Models LOG LOSS Misclassification Error 

Random Forest 0.040 <0.87% 

XGBoost 0.031 <0.87% 

 

Table III. Result of Merged Features of both .asm files & .byte files 

 



 
 

27 | P a g e  
 

CONCLUSION 

The classification of file types is a fundamental machine learning topic that has applications in a variety of products. 

We've split down the file type classification workflow into many parts in this report. We've recommended a tailored 

method for each stage based on the features of our specific dataset. In  particular, using the feature extraction by 

using bags of words for .byte and .asm files, we suggest a model type by choosing them on the basis of their 

performance metrics scores [1].  

First, we used all four models on .byte and . asm files and got maximum accuracy by using Random Forest (Log 

Loss = 0.057) and XG Boost (Log Loss = 0.048), so we only performed Random Forest and XGBoost on the 

merged features of both .byte and .asm files which further reduced the log loss values to for Random Forest (Log 

Loss = 0.040 & XG Boost (Log Los 0.031) 

I.  
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