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ABSTRACT 

MIMO-OFDM systems provide high spectral efficiency for wireless communication systems. However, they 

have a major drawback of high PAPR which results in inefficient use of a power amplifier and also improper 

detections. Now a days, in wireless communication systems, channel estimation is mandatory for higher data 

rates with low bit error rates. For reducing burden on system the channel estimation results are exploited to 

reduce the high PAPR by using the technique called SVD based Generalized Inverse. From the results we can 

say that Sparse MIMO OFDM Channel Estimation Using Spatial and Temporal Correlations is the best for 

channel estimation. 
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I. INTRODUCTION 

 

Multiple Input Multiple Output (MIMO)-OFDM is widely recognized as a key technology for future wire-less 

communications due to its high spectral efficiency and superior robustness to multipath fading channels [1]. For 

MIMO-OFDM systems, accurate channel estimation is essential to guarantee the system performance [2].  

In this letter, a more practical sparse MIMO-OFDM channel estimation scheme based on spatial and temporal 

correlations of sparse wireless MIMO channels is proposed to deal with arbitrary path delays and also we 

exploit a generalized inverse of the right singular matrix of the MIMO channel to use redundant spatial 

dimensions at the transmitter. The generalized inverse of a matrix inherently includes an arbitrarily controllable 

matrix which is our key design parameter to minimize PAPR, and has a fixed part that we use for obtaining the 

spatial multiplexing gain.  

The main contributions of this letter are summarized as follows. First, the proposed scheme can achieve super-

resolution estimates of arbitrary path delays, which is more suitable for wireless channels in practice. Second, 

due to the small scale of the transmit and receive antenna arrays compared to the long signal transmission 

distance in typical MIMO antenna geometry, channel impulse responses (CIRs) of different transmit-receive 

antenna pairs share common path delays [5], which can be translated as a common sparse pattern of CIRs due to 

the spatial correlation of MIMO channels.  
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Meanwhile, such common sparse pattern is nearly unchanged along several adjacent OFDM symbols due to the 

temporal correlation of wireless channels [6], [7]. Compared with previous work which just simply extends the 

sparse channel estimation scheme in single antenna systems to that in MIMO by exploiting the spatial 

correlation of MIMO channels [5] or only considers the temporal correlation for single antenna systems [6], [7], 

the proposed scheme exploits both spatial and temporal correlations to improve the channel estimation accuracy. 

Third, we reduce the pilot overhead by using the finite rate of innovation (FRI) theory [8], which can recover the 

analog sparse signal with very low sampling rate, as a result, the average pilot overhead per antenna only 

depends on the channel sparsity level instead of the channel length. Finally, PAPR performance for large-scale 

MIMO systems, has effectively improved. 

 

II. SPARSE MIMO CHANNEL MODEL 

 

The MIMO channel is shown in Fig.1, and its following characteristics will be considered in this project. 

1) Channel Sparsity: In typical outdoor communication scenarios, the CIR is intrinsically sparse due to several 

significant scatterers [3], [5]. For an  MIMO system, the CIR between the ith transmit antenna 

and the jth receive antenna can be modeled as [1], 

                                 (1) 

 

Fig 1. Spatial and temporal correlations of wireless MIMO channels 

 

Fig 2. Pilot pattern. Note that the specific Nt = 2, D = 4, Np = 4, and Np_total = 8 are used for 

illustration purpose. 



 

66 | P a g e  

Where δ(·) is the Dirac function, P is the total number of resolvable propagation paths, and  and  denote 

the path delay and path gain of the p
th

 path, respectively. 

2) Spatial Correlation: Because the scale of the transmit or receive antenna array is very small compared to the 

long signal transmission distance, channels of different transmit-receive antenna pairs share very similar 

scatterers. Meanwhile, for most communication systems, the path delay difference from the similar scatterer is 

far less than the system sampling period. Therefore, CIRs of different transmit-receive antenna pairs share a 

common sparse pattern, although the corresponding path gains may be quite different [5]. 

3) Temporal Correlation: For wireless channels, the path delays vary much slowly than the path gains, and the 

path gains vary continuously [6]. Thus, the channel sparse pattern is nearly unchanged during several adjacent 

OFDM symbols, and the path gains are also correlated [7]. 

 

III. SPARSE MIMO-OFDM CHANNEL ESTIMATION 

 

In this section, the widely used pilot pattern is briefly introduced at first, based on which a super-resolution 

sparse MIMO OFDM channel estimation method is then applied. Finally, the required number of pilots is 

discussed under the framework of the FRI theory. 

 

3.1 Pilot Pattern 

The pilot pattern widely used in common MIMO-OFDM systems is illustrated in Fig. 2. In the frequency 

domain, Np pilots are uniformly spaced with the pilot interval D (e.g., D = 4 in Fig. 2). Meanwhile, every pilot is 

allocated with a pilot index l for 0 ≤ l ≤ Np − 1, which is ascending with the increase of the subcarrier index. 

Furthermore, to distinguish MIMO channels associated with different transmit antennas, each transmit antenna 

uses a unique subcarrier index initial phase θi for 1 ≤ i ≤ Nt and (Nt − 1)Np zero subcarriers to ensure the 

orthogonality of pilots [4]. Therefore, for the i
th

 transmit antenna, the subcarrier index of the l
th

 pilot is 

                                          (2) 

Consequently, the total pilot overhead per transmit antenna is Np_total = NtNp, and thus, Np can be also referred as 

the average pilot overhead per transmit antenna in this paper. 

 

3.2 Super-Resolution Channel Estimation 

At the receiver, the equivalent baseband channel frequency response (CFR) H(f) can be expressed as 

                                        (3) 

Where superscripts i and j in (1) are omitted for convenience, fs = 1/Ts is the system bandwidth, and Ts is the 

sampling period. Meanwhile, the N-point discrete Fourier transform (DFT) of the time-domain equivalent 

baseband channel can be expressed as [5], i.e., 

                                        (4) 

Therefore, for the (i,j)th transmit-receive antenna pair, according to (2)–(4), the estimated CFRs over pilots can 

be written as 
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                                                    (5) 

Where H ˆ(i,j)[l] for 0 ≤ l ≤ Np − 1 can be obtained by using the conventional minimum mean square error 

(MMSE) or least square (LS) method [2], and W (i,j)[l] is the additive white Gaussian noise (AWGN). Eq. (4.5) 

can be also written in a vector form as  

                                                  (6) 

Because the wireless channel is inherently sparse and the small scale of multiple transmit or receive antennas is 

negligible compared to the long signal transmission distance, CIRs of different transmit-receive antenna pairs 

share common path delays, which is equivalently translated as a common sparse pattern of CIRs due to the 

spatial correlation of MIMO channels [5], i.e 

 

 

 Hence, by exploiting such spatially common sparse pattern shared among different receive antennas associated 

with the  transmit antenna, we have 

                                                            (7) 

Where the Np ×  measurement matrix H ˆ i is 

                                                

 

When all Nt transmit antennas are considered based on (7), we have 

                                                           (8) 

Comparing the formulated problem (8) with the classical direction-of-arrival (DOA) problem [9], we find out 

that they are mathematically equivalent. Specifically, the traditional DOA problem is to typically estimate the 

DOAs of the P sources from a set of time-domain measurements, which are obtained from the Np sensors 

outputs at Nt Nr distinct time instants (time-domain samples). In contrast to our problem in (8), we try to 

estimate the path delays of P multipath from a set of frequency-domain measurements, which are acquired from 

Np pilots of Nt Nr distinct antenna pairs (antenna-domain samples). It has been verified in [10] that the total least 

square estimating signal parameters via rotational invariance techniques (TLS-ESPRIT) algorithm in [9] can be 

applied to (8) to efficiently estimate path delays with arbitrary values. 

By using the TLS-ESPRIT algorithm, we can obtain super resolution estimates of path delays, i.e., , for 1 ≤ p 

≤ P , and thus,  can be obtained accordingly. Then, path gains can be acquired by the LS method [7],  

                             i.e.                                                                    (9) 

For a certain entry of  i.e.,   because θi is known at the receiver and  has been estimated after 

applying TLS-ESPRIT algorithm, we can easily obtain the estimation of the path gain  for 1 ≤ p ≤ P , 1 ≤ i 

≤ Nt, 1 ≤ j ≤Nr. Finally, the complete CFR estimation over all OFDM subcarriers can be obtained based on (3) 

and (4). 
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Furthermore, we can also exploit the temporal correlation of wireless channels to improve the accuracy of the 

channel estimation. First, path delays of CIRs during several adjacent OFDM symbols are nearly unchanged [6], 

[7], which is equivalently referred as a common sparse pattern of CIRs due to the temporal correlation of MIMO 

channels. Thus, the Vandermonde matrix V in (8) remains unchanged across several adjacent OFDM symbols. 

Moreover, path gains during adjacent OFDM symbols are also correlated owing to the temporal continuity of 

the CIR, so as in (8) for several adjacent OFDM symbols are also correlated. Therefore, when estimating CIRs 

of the q
th

 OFDM symbol, we can jointly exploit  of several adjacent OFDM symbols based on (8), i.e., 

                                                       (10) 

Where the subscript ρ is used to denote the index of the OFDM symbol, and the common sparse pattern of CIRs 

is assumed in 2R + 1 adjacent OFDM symbols [7]. In this way, the effective noise can be reduced, so the 

improved channel estimation accuracy is expected. 

In contrast to the existing nonparametric scheme which estimates the channel by interpolating or predicting 

based on CFRs over pilots [1], [2], our proposed scheme exploits the sparsity as well as the spatial and temporal 

correlations of wireless MIMO channels to first acquire estimations of channel parameters, including path 

delays and gains, and then obtain the estimation of CFR according to (3) and (4). 

 

3.3 Discussion on Pilot Overhead 

Compared with the model of the multiple filters bank based on the FRI theory [10], it can be found out that 

CIRs of Nt Nr transmit-receive antenna pairs are equivalent to the Nt Nr semiperiod sparse subspaces, and the Np 

pilots are equivalent to the Np multichannel filters. Therefore, by using the FRI theory, the smallest required 

number of pilots for each transmit antenna is Np = 2P in a noiseless scenario. For practical channels with the 

maximum delay spread τmax, although the normalized channel length L = τmax/Ts is usually very large, the 

sparsity level P is small, i.e., PL [3]. Consequently, in contrast to the nonparametric channel estimation method 

where the required number of pilots heavily depends on L, our proposed parametric scheme only needs 2P pilots 

in theory. Note that the number of pilots in practice is larger than 2P to improve the accuracy of the channel 

estimation due to AWGN. 

 

IV. SYSTEM MODEL DESCRIPTION 

 

As shown in Fig. 3, we consider a downlink single-user (SU) MIMO-OFDM system that consists of a 

transmitter equipped with MT antennas and a receiver equipped with MRantennas, where MT > MR ≥ dk. We 

assume the receiver perfectly reports channel information through an ideal feedback channel. The subscript k 

means the k
th

 subcarrier, ∀ k ∈ {1, . . . , NC}. The transmitter sends a dk × 1 symbol vector sk = [sk,1, . . . , sk, dk]
T 

 

then the received signal can be described as 

                                     (11) 

where Fk denotes the transmission precoder for the k
th

 subcarrier . Rk is the receiver filter of the k
th

 subcarrier, 

and the complex Gaussian noise vector nk . Hk is a MR × MT  Rayleigh fading MIMO channel, and the 

frequency selective fading MIMO-OFDM signaling is assumed as a series of narrowband frequency flat fading 

signalings. For NC subcarriers, the overall received signal can be denoted as 
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                                                                        (12) 

                                                                                                                                                    (13) 

where n = [n
T

1 , . . . , n
T

NC ]
T
 , s = [s

T
1 , . . . , s

T
NC ]

T
 , F =blkdiag(F1, . . . , FNC ), R = blkdiag (R1, . . . , RNC ), 

and H = blkdiag(H1, . . . , HNC ). For finding  we have to apply Generalized inverse. 

 

Fig. 3. System model of single user MIMO-OFDM system. 

 

V. ALGORITHM FOR THE GENERALIZED INVERSE OF A MATRIX  

 

An algorithm for finding the generalized inverse of a matrix is as follows, according to Adetunde et al; 

Step 1: In A of rank r, find any non-singular minor of order r call it M 

Step 2: Invert M and transpose the inverse (M) 

Step3: In A replace each element of M by the corresponding element of (M) 

That is a = M the (s,t) element of m, then replace a b M, the (t,s) element of M equivalent to the (s,t) element of 

the transpose of M 

Step4: Replace all the other elements of A by zero 

Step 5: Transpose the resulting matrix and the result is  G a generalized inverse of A 

  

VI. SIMULATION RESULTS 

 

A simulation study was carried out to compare the performance of the proposed scheme with those of the 

existing state-of-the-ar6t methods for MIMO-OFDM systems. The conventional comb-type pilot and time-

domain training based orthogonal pilot (TTOP) [2] schemes were selected as the typical examples of the 

nonparametric channel estimation scheme, while the recent time-frequency joint (TFJ) channel estimation 

scheme [4] was selected as an example of the conventional parametric scheme. System parameters were set as 

follows: the carrier frequency is fc = 1 GHz, the system bandwidth is fs = 10 MHz, the size of the OFDM 
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symbol is N = 4096, and Ng = 256 is the guard interval length P, which can combat channels whose maximum 

delay spread is 25.6 μs. The International Telecommunication Union Vehicular B (ITU-VB) channel model with 

the maximum delay spread 20 μs and the number of paths P = 6 [4] were considered. 

 

Fig. 4. MSE performance comparison of different schemes in a 4 × 4 MIMO System Static 

channel 

Fig.4 & Fig.5 compares the mean square error (MSE) performance of different channel estimation schemes. 

Both the static ITUVB channel and the time-varying ITU-VB channel with the mobile speed of 90 km/h in a 4 × 

4 MIMO system were considered. The comb-type pilot based scheme used Np = 256 pilots, the TTOP scheme 

used Np = 64 pilots with T adjacent OFDM symbols for training, where T = 4 for the time-varying channel and 

T = 8 for the static channel to achieve better performance, the TFJ scheme adopted time- domain training 

sequences of 256-length and Np = 64 pilots, and our proposed scheme used Np = 64 pilots with R = 4 for fair 

comparison. Moreover, for the time-varying ITU-VB channel, the superior performance of our proposed 

parametric scheme to conventional nonparametric schemes is more obvious. 

 

Fig. 5. MSE performance comparison of different schemes in a 4 × 4 MIMO System time-

varying channel with the mobile speed of 90km/h 
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Fig. 6. MSE performance of the proposed scheme in 4 × 4, 8 × 8, and 12 ×12 MIMO systems. 

The MSE performance of the proposed scheme in 12 × 12 MIMO system is superior to that in 8 × 8 MIMO 

system by 5 dB with the same Np and outperforms that in 4 × 4 MIMO system with the reduced Np. Fig.6, 

reveals that with the increased number of antennas, the MSE performance improves with the same Np. 

Equivalently, to achieve the same channel estimation accuracy; the required number of pilots Np can be reduced. 

Fig. 7 shows the reduction of PAPR with SVD based Generalized inverse compare to the original MIMO-

OFDM technique. 

 

Fig. 7. Comparison of reduction in PAPR between original and propose schemes 

 

VII. CONCLUSION 

 

The proposed super-resolution sparse MIMO channel estimation scheme exploits the sparsity as well as the 

spatial and temporal correlations of wireless MIMO channels. super-resolution estimates of path delays with 

arbitrary values can achieve higher channel estimation accuracy than conventional schemes. Under the 

framework of the FRI theory, the required number of pilots in the proposed scheme is obviously less than that in 

nonparametric channel estimation schemes. Moreover, simulations demonstrate that the average pilot overhead 

per transmit antenna will be interestingly reduced with the increased number of antennas. It is observed that the 
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PAPR value of proposed scheme (3.8dB) is decreasing with same number of transmitting and receiving 

antennas compare to the original scheme (13dB). 

 

REFERENCES 

 

[1]  G. Stuberet al., “Broadband MIMO-OFDM wireless communications,”Proc. IEEE, vol. 92, no. 2, pp. 

271–294, Feb. 2004. 

[2]  I. Barhumi, G. Leus, and M. Moonen, “Optimal training design forMIMO OFDM systems in mobile 

wireless channels,” IEEE Trans. SignalProcess., vol. 3, no. 6, pp. 958– 974, Dec. 2009. 

[3]  W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compressed channelsensing: A new approach to 

estimating sparse multipath channels,”Proc. IEEE, vol. 98, no. 6, pp. 1058–1076, Jun. 2010. 

[4]  L. Dai, Z. Wang, and Z. Yang, “Spectrally efficient time-frequency trainingOFDM for mobile large-

scale MIMO systems,” IEEE J. Sel. AreasCommun., vol. 31, no. 2, pp. 251– 263, Feb. 2013. 

[5]  Y. Barbotin and M. Vetterli, “Estimation of sparse MIMO channels withcommon support,” IEEE Trans. 

Commun., vol. 60, no. 12, pp. 3705–3716,Dec. 2012. 

[6]  I. Telatar and D. Tse, “Capacity and mutual information of wideband multipathfading channels,” IEEE 

Trans. Inf. Theory, vol. 46, no. 4, pp. 1384–1400, Jul. 2000. 

[7]  L. Dai, J. Wang, Z. Wang, P. Tsiaflakis, and M. Moonen, “Spectrumandenergy- efficient OFDM based 

on simultaneous multi-channel reconstruction,”IEEE Trans. Signal Process., vol. 61, no. 23, pp. 6047–

6059,Dec. 2013. 

[8]  P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and reconstructingsignals of finite rate of 

innovation: Shannon meets Strang-Fix,”IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1741–1757, 

May 2007. 

[9]  R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters viarotational invariance techniques,” 

IEEE Trans. Acoust., Speech, SignalProcess., vol. 37, no. 7, pp. 984–995, Jul. 1989. 

[10]  K. Gedlyahu and Y. C. Eldar, “Time-delay estimation from low-ratesamples: A union of subspaces 

approach,” IEEE Trans. Signal Process.,vol. 58, no. 6, pp. 3017–3031, Sep. 2010. 

[11]  Hyun-Su Cha, Hyukjin Chae, “Generalized Inverse Aided PAPR- Aware Linear Precoder Design for 

MIMO-OFDM System,” IEEE communications letters. Vol 18. NO. 8. AUGUST 2014 


