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ABSTRACT 

Analogous Prefix Adders have been established as the most efficient circuits for binary addition. The binary 

adder is the critical element in most digital circuit designs including digital signal processors and 

microprocessor data path units. The final carry is generated ahead to the generation of the sum which leads 

extensive research fixated on reduction in circuit complexity and power consumption of the adder. In VLSI 

implementation, parallel-prefix adders are known to have the superlative performance. This paper scrutinizes 

four types of carry-tree adders (the Kogge-Stone, sparse Kogge-Stone, spanning tree, Brent Kung Adder) and 

compare them to the simple Ripple Carry Adder and Carry Skip Adder. These designs of varied bit-widths are 

simulated using instigated on a Xilinx version Spartan 3E FPGA. These fast carry-chain carry-tree adders 

support the bit width up to 256. We blazon on the area requirements and reduction in circuit complexity for a 

multiplicity of classical parallel prefix adder structures. 
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I. FOREWORD 

 

In Digital Computer Design adder is an imperative component and it is used in manifold blocks of its 

architecture. In many Computers and in various classes of processor specialization, adders are not only used in 

Arithmetic Logic Units
 [6]

, but also used to calculate addresses and table indices. There exist manifold 

algorithms to carry on addition operation ranging from simple Ripple Carry Adders to complex CLA
 [1]

. 

The basic operations involved in any Digital Signal Processing systems are Multiplication, Addition and 

Accumulation
 [2]

. Addition is an indispensible operation in any Digital, DSP or control system. Therefore fast 

and accurate operation of digital system relies on the performance of adders 
.
 Hence improving the performance 

of adder is the main area of research in most digital circuits. 

Binary addition is a fundamental operation in most digital circuits. There are multiplicities of adders, each has 

certain performance. Each type of adder is selected depending on where the adder is to be used. Adders are 

critically imperative elements in processor chips and they are used in floating-point arithmetic units, ALUs, 

memory addressing, program counter updating, Booth Multipliers, ALU Designing, multimedia and 

communication systems, Real-time signal processing like audio signal processing, video/image processing, or 

large capacity data processing etc
 [3]

. The requirements of the adder are that it is primarily fast and secondarily 

efficient in terms of power consumption. In VLSI implementations, parallel-prefix adders are known to have the 

best performance
 [10][13]

. In this paper, designing and implementing the tree-based adders on FPGAs are 

described.  
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Tree-based adder structures are implemented on FPGA and compared with the Ripple Carry Adder (RCA) and 

the Carry Skip Adder (CSA)
[14]

. Some conclusions and suggestions are made for improving FPGA designs to 

empower better tree-based adder performance. Analogous prefix (or tree prefix) adders provide a good 

theoretical basis to make a wide range of design trade-offs in terms of delay, area and power
[5][15]

. Parallel Prefix 

Adders (PPA) is designed by considering carry look adder as a base. Similar to a CLA they employ the 3-stage 

structure shown in Figure.1 CLA and a PPA differs in second stage. In second stage carry signal of binary 

addition is generated 

 

Figure.1 Stages of Binary Addition 

Three stage structure of the carry look ahead and parallel prefix adder. In a PPA the prefix operator “o”
[4]

 is 

introduced and the carry signal generation is treated as a prefix problem. 

 

II. THESIS 

 

We compared the design of the ripple carry adder with the carry-look ahead, carry-skip, and carry-select adders 

on the Xilinx 4000 series FPGAs. Only an optimized form of the carry-skip adder performed better than the 

ripple carry adder when the adder operands were above 56 bits
 [11]

. A study of adders implemented on the Xilinx 

Vertex II yielded similar results. The preceding authors considered several parallel prefix adders implemented 

on a Xilinx Vertex 5 FPGA. It is found that the unpretentious RCA adder is superior to the parallel prefix 

designs because the RCA can take advantage of the fast carry chain on the FPGA. This study focuses on carry-

tree adders implemented on a Xilinx Spartan 3E FPGA. The distinctive contributions of this paper are two-fold. 

First, we consider tree-based adders and a hybrid form which combines a tree structure with a ripple-carry 

design. The Kogge-Stone adder is chosen as a representative of the former type and the sparse Kogge Stone and 

Brent Kung Adder is representative of the latter category. Second, this paper considers the practical issues 

involved in testing the adders and provides authentic measurement data to compare with simulation results. The 

previous works cited above all rely upon the synthesis reports from the FPGA place and route software for their 

consequences. 

A 16-bit Kogge-Stone adder is built from 16 generate and propagate (GP) blocks, 37 black cells (BC) blocks, 16 

(GC) blocks, 16 sum blocks. Kogge-Stone prefix tree is one of the adders that use fewest logic levels
 [16]

. Gray 

cells are interleaved similar to black cells except that the gray cells final output carry outs instead of 

intermediate G/P group. The reason of starting with Kogge-Stone prefix tree is that it is the tranquil to build in 

terms of using a program concept. The Figure.2 shown below is 16-bit (a power of 2) prefix tree and it is not 

problematic to extend the structure to any width if the basics are austerely followed. The sparse Kogge-Stone 

adder consists of several smaller ripple carry adders (RCAs) on its lower half, a carry tree on its upper half. It 
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terminates with RCAs. The number of carries generated is less in a sparse Kogge Stone adder compared to the 

regular Kogge-Stone adder. The functionality of the GP block, black cell and the gray cell remains unerringly 

the same as in the regular Kogge-Stone adder. The sparse Kogge-Stone adder, this design cease with a 4- bit 

RCA. As the FPGA uses a fast carry-chain for the RCA, it is fascinating to compare the enactment of this adder 

with the sparse Kogge-Stone and regular Kogge-Stone adders. The Figure.4Shown below is the Block diagram 

of 16-Bit Sparse Kogge-Stone Adder. 

 

Fig.2. 16 bit sparse kogge-Stone adder 

The 16 bit SKA uses black cells and gray cells as well as full adder blocks too. This adder computes the carries 

using the BC’s and GC’s and ceases with 4 bit RCA’s. Totally it uses 16 full adders. The 16 bit SKA is shown 

in figure 2. In this adder, first the input bits (a, b) are converted as propagate and generate (p, g). Then propagate 

and generate terms are given to BC’s and GC’s. The carries are propagated in advance using these cells. Later 

these are given to full adder blocks. Another PPA is known as STA is also tested 
[6].

 Like the SKA, this adder 

also ceases with a RCA. It also uses the BC’s and GC’s and full adder blocks like SKA’s but the  dissimilarity  

is the interconnection between them 
[7].

The 16 bit STA is shown in the below figure 3. 

 

Fig.3. 16 bit spanning tree adder 
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Fig.4. 16 bit kogge stone adder 

Another carry tree known as BKA which also uses BC’s and GC’s but less than the KSA. So it takes less 

area to implement than KSA. The 16 bit BKA uses 14 BC’s and 11 GC’s but kogge stone uses 36 BC’s and 15 

GC’s. So BKA has less architecture and inhabit less area than KSA. The 16 bit BKA is shown in the below 

figure 5. 

 

Fig.5. 16 bit Brent Kung adder 

BKA inhabit less area than the other 3 adders called SKA, KSA, and STA. This adder uses limited number of 

propagate and generate cells than the other 3 adders. It takes less area to implement than the KSA and has less 

wiring congestion. The operation of the 16 bit brent kung adder is given below 
[3].

This adder uses less BC’s and 

GC’s than kogge stone adder and has the better delay performance which is observed in Agilent 1692A logic 

analyzer. 
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III. CONSEQUENCES 

 

Table.3 contains the results obtained. The adder abbreviations used in the table and the following deliberations 

are: BK for the Brent-Kung adder, KS for the Kogge-Stone adder, SK for Sparse Kogge Stone Adder, RC for 

Ripple Carry Adder. In the table, area is measured in Slice Look-Up Tables (LUT) units which characterize 

configurable logic units within the FPGA. Remarkably the synthesis tool synthesized a simple ripple carry adder 

regardless of the optimization strategy. The adder was implemented by configuring the slices within the FPGA 

as full adder components. Hence the number of lookup tables matched the operand bit-size in every case. 

Table.3 give the area results with the software set for area. It is apparent from these tables that the area 

optimization strategy produces adders which are ominously smaller compared to those produced with 

complexity optimization. In Table we can observe that generally the adder areas compare with the 

characteristics of their type. The BK exhibits the smallest size while the KS is the largest adder. This shows that 

in certain cases the tool optimized circuits reverse the algorithmic superiority of a design 

Table.3 Area Results Obtained With Area Optimization 

 

 

Figure.6 Comparison of path delays for Adders 

These adders are implemented in verilog HDL in Xilinx 13.2 ISE design suite and then verified using Xilinx 

vertex 5 FPGA through chip scope analyzer 
[7], [8], [9].

 And these were tested using Agilent 1692A logic analyzer. 

 

Fig7: Look head adder result 
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Fig8: Brentkung adder Result 

 

Fig9: koggestone Adder result 

 

Figure10: spinning tree adder result 

 

Figure11: sparse koggestone adder result 

 

IV. INFERENCE 

 

Analogous-prefix adders are not as effective as the simple ripple-carry adder at low to moderate bit widths. We 

have indications that the carry-tree adders eventually surpass the performance of the linear adder designs at high 

bit-widths, expected to be in the 128 to 256 bit range. This is imperative for large adders used in precision 

arithmetic and cryptographic applications where the addition of numbers on the order of a thousand bits is not 

uncommon. Because the adder is often the critical element which determines to a large part the cycle time and 

power dissipation for many digital signal processing and cryptographically implementations, it would be 

worthwhile for future FPGA designs to include an optimized carry path to  empower  tree based adder designs to 

be optimized for place and routing. The testability and possible fault tolerant features of the Brent Kung adder 

are topics for future exploration 

 

REFERENCES 

 

[1] A Journal by Y. Choi, “Parallel Prefix Adder Design”, Proc. 17
th

  IEEE  Symposium on Computer 



 

62 | P a g e  

Arithmetic, p 90-98, 27
th

 June 2005. 

[2] A book on Vlsi Digital Signal Processing Systems: Design And Implementation page 201-250 by 

Keshab K. Parhi 

[3] A book on “Real time business processing” by Prentice Hall page no: 781-892. 

[4] A Journal by Kogge P, Stone H, “A parallel algorithm for the efficient solution of a general class 

Recurrence relations,” IEEE Trans. Computers, Vol.C-22, pp 786-793,Aug. 1973. 

[5] A Journal by R. Zimmermann, “Non-heuristic operation and synthesis of parallel-prefix adders,” in 

International workshop on logic and architecture synthesis, December 1996,pp. 123-132. 

[6] A Journal by C.Nagendra, M. J. Irwin, and R. M. Owens, “Area -Time-Power tradeoffs in parallel 

adders”, Trans. Circuits Syst. II, vol.43, pp.Applications 19, 285-298, 2003. 

[6] A computation, Journal  on ACM La.Jolla CA Volume 27 by R. Ladner and M. Fischer, “Parallel of 

ACM.La.Jolla CA,Vol.27,pp.831-838,October 1980. 

[7] A Journal by Reto Zimmermann on  Binary Adder Architectures for Cell-Based VLSIan their Synthesis. 

Hartung-Gorre, 1998. 

[8] A Journal by Y. Choi, “Parallel Prefix Adder Design,”   Proc. 17th IEEE Symposium onComputer 

Arithmetic,pp 90-98, 27th Jun2005. 

[9] A conference report  on, “A taxonomy ofparallel prefix networks,” in Signals, Systems and 

Computers,2003. Conference Record of Thirty Seventh Asilomar Conference D. Harrison, vol. 2, the 

Nov. 2003,pp.2217. 

[10] N. H. E. Weste and D. Harris, CMOS VLSI Design, 4th  edition, Pearson Addison-Wesley, 2011. 

[11] H. Ling,  High-speed binary adder," IBM Journal of Research and Development, vol. 25,no. 3, pp. 156  

March 1981. 

[12] A paper on K.Vitoroulis and A. J. Al-Khalili “Performance of Parallel Prefix Adder Implemented with 

FPGA   technology,” IEENortheast Workshop on Circuits and Systems,pp.451-575, Aug. 2007 

[13] A paper by D. H. K. Hoe, C. Martinez, and J. Vundavalli, “Design and Characterization ofanalogous 

Prefix Adders using FPGAs, ”IEE43
rd

 Southeastern  Symposium on System Theory, pp. 167-178 ,2011  

[14]  T. Matsunaga, S. Kimura, and Y. Matsunaga.“Power-conscious syntheses of parallel prefix adders 

under bitwise timingconstraints,” Proc. the Workshop on  Synthesis And System Integration of Mixed 

Information technologies(SASIMI), Sapporo,Japan,October 2011,pp. 11–24. 

[15] A book by F. E. Fich, “New bounds for parallel Prefixcircuits,” in Proc. of the 15thAnnu. ACM 

Symposia. Theory of Computer., 1983,pp.100–109. 

[16]  A journal by D. Gizopoulos, M. Psarakis, A. Paschalis,and Y.Zorian, “Easily TestableCellular Carry 

Look ahead Adders,” Journal ofElectronic Testing: Theory and Applications 19, 275-312. 

 

 

 

 

 

 



 

63 | P a g e  

BIBLOGRAPHY 

 

P.S.N Bhaskar received his M.Tech in VLSI from the Andhra University and is 

working in the Department of Electronics & Communication Engineering in 

AlwardasGroup in Visakhapatnam. He has a vast 14 years teaching experience He is 

an Life member of IRED,SDIWC, SCIEI,WAYS ISEIS,EA,IAENG,ISQEM,ISDS, 

and  MISTE. His prime area of interest is on “Floor planning of algorithm 

Techniques” in VLSI design. 

 

K.M.Manjunath: is an assistant professor & currently working in Yogananda 

Institute of Technology and Science. He is perused his B.Tech from SITAMS in 

2005 and received his M.Tech degree in Electronics and Communication 

Engineering in the year 2011. As he is in the field of teaching for a long time he has 

8 years of teaching experience in VLSI, communication systems, electronic devices 

and circuits, Pulse and digital circuits. He subject of interest is on VLSI design. 

 

 

 

 


