TOUCH SCREEN BASED SPEED CONTROL OF SINGLE PHASE INDUCTION MOTOR

Neetu Singh M.R¹, Sarat Kumar Sahoo²

¹Student, ²Assistant Professor, School of Electrical Engineering, VIT University, (India)

ABSTRACT

This paper gives an brief idea of touch screen technology and its interfacing with a controller to control the speed of single phase induction motor. Here touch screen technology and PSOC microcontroller concept is utilized which is less space consumption and easy to design. The aim of this paper is to have remote sensing and speed control of an AC motor.

Keywords: Touch Screen Technology, PSOC, CPLD

I. INTRODUCTION

The main aim of this paper is use the touch screen in the speed control system of AC motor and DC motors.

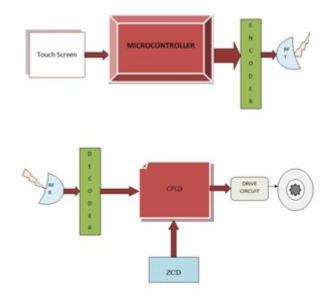
In this paper the resistive touch screen, where in the user has to physically touch the screen with slight impact on the screen, this variation in the resistance is read by the touch screen controller, this in turns sends the data to the micro controller using the signal conditioning circuit.

The micro controller will read the data obtained from the touch screen controller and will decode the message and depending on the data decoded it will perform the specified task of driving the speed of the motor.

The software developed in the CPLD will read the data from wireless network and will decode the same, after which it will drive the CPLD unit connected to the SCR control unit, which then drives the motor speed or if the bulb is connected it will drive the intensity of the bulb.

The user on touching the screen at particular position the speed of the motor is controlled and like this at different position the different speed is controlled.

In this paper new technologies are utilized such as follows


- PSOC microcontroller
- Touch screen technology
- Multiple function processor(CPLD)
- Wireless control

The motive of this paper to have accurate, precise control, less area and easy way of controlling.

Vol. No.8 Issue 01, January-June 2016 www.arresearchpublication.com

II. BLOCK DIAGRAM

2.1 Touch Screen

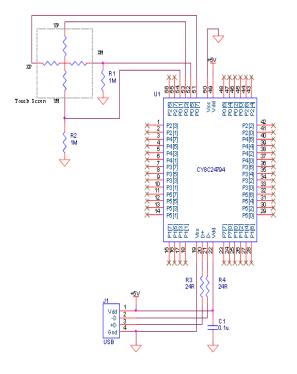
Touch screens are a clear sheet of plastic with tiny sensors that detect pressure from either a finger tip or a pointing device. When these sensors are pressed, they perform, they perform the functions found with the traditional mouse; single click, double click and drag. A software utility needs to be installed on the computer hard drive to further customize the different settings. Touch screens are great for the cause and effect and software applications that require direct select.

2.2 4-Wire Resistive Touch Screens

4-Wire Resistive touch technology consists of a glass or acrylic panel that is coated with electrically conductive and resistive layers. The thin layers are separated by invisible separator dots. When operating, an electrical current moves through the screen. When pressure is applied to the screen the layers are pressed together, causing a change in the electrical current and a touch event to be registered.

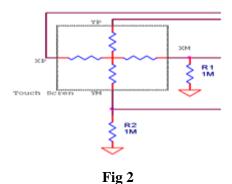
4-Wire Resistive type touch screens are generally the most affordable. Although clarity is less than with other touch screen types, resistive screens are very durable and can be used in a variety of environments. This type of screen is recommended for individual, home, school, or office use, or less demanding point-of-sale systems, restaurant systems, etc.

2.3 Interface of 4 Wire Resistive Touch screen with PSOC


Introduction

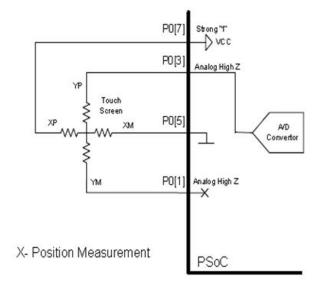
Resistive-type touch screens are pressure-sensitive display overlays that are widely used for many applications. Touch screen construction is simple and operation is easy for users to understand.

Schematic


The schematic is very simple (Figure 1). The touch screen is directly connected to the PSoC device ports. Resistors R1 and R2 are used as pull downs to terminate the PSoC inputs when the plates are not driven.

Vol. No.8 Issue 01, January-June 2016 www.arresearchpublication.com

2.4 How To Measure Touch screen Parameters



The Fig 2 shows the touch screen pattern. Now we should know how to use it. To measure the parameters of touch screen we should interface it with PSOC micro controller. The parameters of Touch Screen are X axis measurement, Y axis measurement and Touch pressure.

2055

Vol. No.8 Issue 01, January-June 2016 www.arresearchpublication.com

Name		Description									
Drive Node 1(7:0)		Bit 1 of	Bit 1 of the Drive mode, for each of 8-port pins, for a GPIO port.								
		(210) 0005 0015	Pin Output Strong Strong	High	Pin (Resi Stror		Notes				
		010b 011b 100b 101b	lb High-Z lb Resistive lb Sow+strong lb Sow+strong lb High-Z		High-Z Strong High-Z Slow + strong High-Z Slow + strong		Digital input enabled.				
		110b 111b					Reset state. Digital input disabled for zero power. 12C Compatible mode.				
Modes	7	6	5	1		3	2	1	0	CW	
X POS	1	0	0	0		a-10%	0	0	0	80	
MO	1	0	0	0		0	0	1	0	82	
M1	Æ	1	14	1		1	1	0	1	FD	
M2	0	1	0	1	0	11	1	0	1	5D	

Above Figure shows a complete approach of Measurement of Touch Screen parameter i.e. X position. Similarly for Y position and touch pressure is done. To know more details refer technical document by Cypress.

2.5 Detailed Approach of Touch Screen interface with PSOC microcontroller

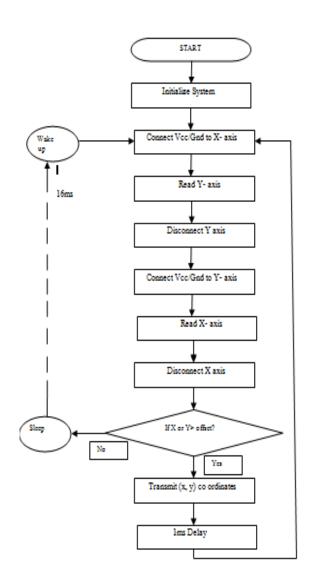
Necessity of PSOC

- 1. Touch screen controller need MUX+PGA (programmable gain amplifier)+ADC
- 2. In PSOC \rightarrow MUX+ PGA + ADC are available & they are inbuilt.
- 3. In built clock frequency, so no need external crystal.

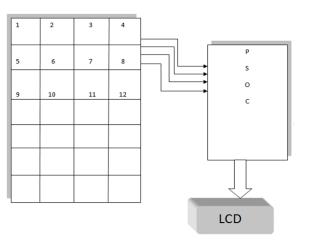
All these are done with the help of "PSOC designer Software".

2.6 Programming techniques

Make a LOOK UP table to know the axis of touch screen.


Vol. No.8 Issue 01, January-June 2016

www.arresearchpublication.com


3 requirements of touch screen are

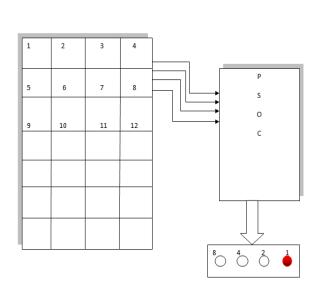
- 1) X position
- 2) Y position
- 3) Touch Pressure Z of both X & Y position
- The flow chart is as follows

To know the axis of Touch screen+PSoC is interfaced with LCD. The circuit diagram is as shown in Fig 3

Vol. No.8 Issue 01, January-June 2016 www.arresearchpublication.com

Results

ROW1	XMIN	XMAX	Y1MIN	Y1MAX	Y2MIN	Y2MAX	Y3MIN	Y3MAX
	ODO4	0D025	032F	0330	06CC	06DB	09EE	09F0
ROW2	0A90	OAAB	0344	034D	08A2	08A6	09F8	0A00
ROW3	0869	0875	035D	0366	06E8	06EF	0A00	0A11
ROW4	066A	0675	0363	0378	06F1	06FE	0A1E	0A24
ROW5	0412	0419	036C	0375	067C	0703	0A1B	0A2F


2.7 Transmission of Signal

The above results are coded in the PSoC microcontroller and even programming is done to send the signal from Encoder. HT12E encoder is used. And similarly to receive the signal an decoder is used, here HT12D is used. The advantage of this Encoder and Decoder is it will convert digital data into frequency. Radio Frequency Transmission is used which has 433.3MHz and around 2km of distance.

2.8 Testing

Once the coding is done with microcontroller then output of hardware is tested, i.e. by connecting LED as shown in Fig 4

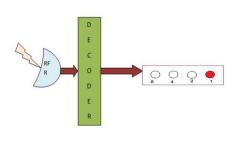
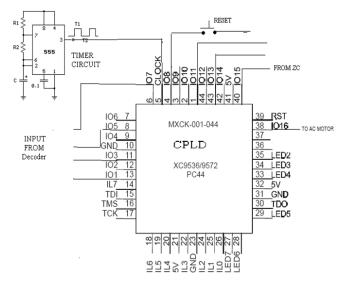

Vol. No.8 Issue 01, January-June 2016 www.arresearchpublication.com

Fig 4

If you touch the position 1 in touch screen then LED 1 is enabled. Similarly up to 16 bit we can check. In this paper only 6 different speeds is considered so 6 combinations is checked.

Similarly once Encoder and RFT is connected to PSoC the receiving end is also tested as shown in Fig 5.

III. CONTROL OF AC MOTOR


In control part Complex Programmable Logic Device (CPLD), Driver circuit and gate pulses design is done. Once output of the decoder is satisfied, it will be interfaced with CPLD. For reset or as oscillator for CPLD, 555 timer is used. The circuit diagram is as shown below Fig 6.

As the size and complexity of digital system increases, more and more computer aided design tools are being introduced into the hardware design process.

Programmable logic devices provide the benefits of high integration levels without the risks or expenses of IC development.

CPLD'S can be designed and verified quickly while the same process requires several weeks with discrete IC's. These devices being software configured and field programmable. Users can modify their designs very easily. Also there are no, Non-Recurring Engineering [NRE] costs and no delays for prototypes to be manufactured. This results in significant cost savings in design and production.

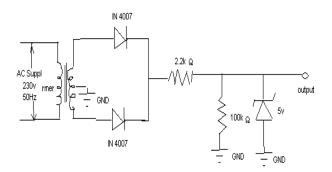
Vol. No.8 Issue 01, January-June 2016 www.arresearchpublication.com

VHDL language is used for programming CPLD. The design of 555 timer is as follows.

Charging Time = $0.693 * R_1 R_2 * C$ Discharging Time= $0.693 * R_2 * C$

Period = $0.693 * (R_1 + 2R_2)$

Frequency= $1.44/(R_1 + 2R_2) C$

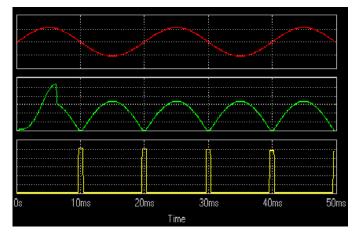

R₁=1 KΩ, R₂=10 KΩ, C=0.001μ F

Then Frequency= 68 kHz

IV. GATE PULSE

The gate pulses for the TRIAC circuit are designed by Zero Crossing Detector ZCD circuit. The ZCD circuit is connected to CPLD as shown in Fig 5. When decoder gets position one from touch screen and it send to CPLD, the pulses generated from ZCD will be read by controller and according to coding and number of counter set in the coding the speed will vary.

The ZCD circuit is as shown below..



OUTPUT WAVEFORMS OF ZCD

- 2055

Vol. No.8 Issue 01, January-June 2016 www.arresearchpublication.com

Red wave from fig 25 shows input AC voltage of 220, and green wave shows output of full wave rectifier i.e., 220 volt DC and yellow wave indicate output of complete circuit of 5 volt DC.

IV. TRIAC CIRCUIT

The TRIAC is known as a component which is essential in controlling power from an AC source (mains). In most cases, the circuit has an inductive component: either because of the nature of the load itself: motors, transformers, ballast inductance; or because of the source impedance: utilization of the secondary of a transformer, length of the supply line, etc. On inductive loads, the operating conditions vary considerably, when closing the circuit, depending on the control mode (gate current, polarity and width) and synchronization of the firing. In order to build an optimal control circuit it is indispensable to analyse the various possibilities. The TRIAC circuit is as shown in Fig 7

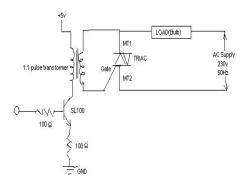


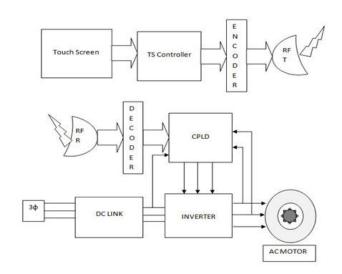
Fig 7

Vol. No.8 Issue 01, January-June 2016

www.arresearchpublication.com

V. RESULTS

TOUCH SCREEN POSITION	SPEED IN RPM	OUTPUT VOLTAGE IN		
		VOLTS		
1	190	73		
2	245	117		
3	350	199		
4	600	207		
5	774	211		
6	STOP	STOP		


ADVANTAGES:

- User friendly
- No dangers associated with switching
- Long life
- More reliable
- Consumes less power
- Easy control of speed
- Compact in size

APPLICATIONS:

- Power cutting industries
- Cranes
- Electric Trains
- LATEST APPLICATION <u>WASHING MACHINE</u>

VI. FUTURE IMPLEMENTATION

International Journal of Electrical and Electronics Engineers Vol. No.8 Issue 01, January-June 2016 www.arresearchpublication.com

The above block diagram shows the future implementation of Touch Screen Based speed control of three phase induction motor.

VII. CONCULSION

In this project we are using Touch Screen in order to control electrical equipments like AC/DC motor, electric bulbs. By making use of this technology, we can control the equipment in a safe and simpler manner. It is easy to operate and can be operated by any one. The danger of electric shock with conventional switches is also eliminated by using technology. The power consumed is relatively low compared to switches.

With constant improvement in touch screen technology it would be more feasible to use touch screen than the conventional switches. Use of this type of control would make the systems more reliable and long life.

REFERENCES

- [1] Communication Four-Wire, Resistive-Type Touch Screen with USB Interface by " SVYATOSLAV PALIY"
- [2] System level solutions Lab manual.
- [3] "A study on Touch Screen" by JOHN J ROVE.
- [4] Edusat programme lecture notes on power electronics by Prof. M. Madhusudhan Rao
- [5] Zero Crossing Detector by SUNPLUS.
- [6] Technical Reference by PSoC Cypress.
- [7] Timer Circuits by John Hewes 2008.
- [8] "Architecture of FPGAs and CPLDs: A Tutorial", Stephen Brown and Jonathan Rose Department of Electrical and Computer Engineering University of Toronto
- [9] VHDL Tutorial "Jan Van der Spiegel" University of Pennsylvania
- [10] A VHDL Primer "Jayaram Bhasker" American Telephone and Telegraph Company Bell Laboratories Division
- [11] "Designing with XC9500 CPLDs" by Xilinx.
- [12] Kiran Shivade "Experimental Investigation of Heat Dissipation for Cross Flow Heat Exchanger with Conventional Coolant Based Hybrid Nano Fluid Its Validation With Cfd" International Journal of Innovative Research In Science and Engineering.2454-9665.