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ABSTRACT 

Compressed sensing (also known as compressive sensing, compressive sampling, or sparse sampling) is a signal 

processing technique for efficiently acquiring and reconstructing a signal, by finding solutions 

to underdetermined linear systems. Given signals of objects with sparse contents relative to its dimension, 

compressed sensing seeks to reconstruct the signals from as few non-adaptive linear measurements as possible. 

This paper deals with the CS paradigm exploring sparsity, incoherence, restricted isometric properties of the 

mathematical model. Using Sparse recovery Algorithm, Null Space Conditions and Thresholds for Rank 

Minimization a compressive sensing scheme with linear decoding complexity, deterministic performance 

guarantees of linear sparsity recovery, and explicitly constructible measurement matrices is analysed. 
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I. INTRODUCTION 

 

 The theory of compressive sensing was developed by Candes et al and Donoho in 2004. This method is 

different from traditional method as it sampled the signal below the Nyquist rate and it permits to exploit the 

sparse property at the signal acquisition stage of compression. Contrary to traditional Nyquist paradigm, the CS 

paradigm, banking on finding sparse solutions to underdetermined linear systems, can reconstruct the signals 

from far fewer samples than is possible using Nyquist sampling rate. In this method the signal is first 

transformed into a sparse domain and then the signal is reconstructed using numerical optimization technique 

using small number of linear measurements. In essence, CS combines the sampling and compression into one 

step by measuring minimum samples that contain maximum in- formation about the signal. This eliminates the 

need to acquire and store large number of samples only to drop most of them because of their minimal value. CS 

operates very differently, and performs as ―if it were possible to directly acquire just the important information 

about the object of interest.‖ By taking about O(Slog(n/S)) random projections as in ―Random Sensing,‖ one has 

enough information to reconstruct the signal with accuracy at least as good as that provided by fS, the best S-

term approximation—the best compressed representation—of the object. 

This paper starts with the insight of the compressive sensing. Section II focuses on various parameters like 

sparsity, incoherence, analyzing the mathematical model, for the explicit constructions of sensing matrices and 

efficient decoding algorithms. Section III states the applications of compressive sensing and Section IV gives 

the conclusion for the article. 

 

 

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_(electronics)
http://en.wikipedia.org/wiki/Underdetermined_system
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II. COMPRESSIVE SENSING 

 

Compressive sensing theory asserts that we can recover certain signals from fewer samples than required in 

Nyquist paradigm. This recovery is exact if signal being sensed has a low information rate (means it is sparse in 

original or some transform domain). Number of samples needed for exact recovery depends on particular 

reconstruction algorithm being used. If signal is not sparse, then recovered signal is best reconstruction 

obtainable from s largest coefficients of signal. CS handles noise gracefully and reconstruction error is bounded 

for bounded perturbations in data. Various parameters related to the behavior of CS are analyzed as follows: 

 

2.1 Sparsity 

A signal which has only non-zero coefficients, is said to be s-Sparse. Vectors are often used to represent large 

amounts of data which can be difficult to store or transmit. CS theory relies first and foremost on the signal of 

interest, having a sparse representation in some basis,ψ=[ ψ1, ψ2,……ψL] such that f= ψx where is the coefficient 

vector f for under the basis ψ . For f to be sparse in ψ, the coefficients ,xi , must be mostly zero or insignificant 

such that they can be discarded without any perceptual loss. If it has the most compact representation, then 

should be compressible if captured in some other basis. So sparseness also implies compressibility and vice 

versa. A familiar example of such a signal is a sine wave which requires many coefficients in time to represent, 

but requires only one non-zero coefficient in the Fourier domain[1].   

By using a sparse approximation the amount of space needed to store the vector would be reduced to a fraction 

of what was originally needed. Sparse approximations can also be used to analyze data by showing how column 

vectors in a given basis come together to produce the data. There are many areas of science and technology 

which have greatly benefited from advances involving sparse approximations. 

Compressive Sensing is based on the empirical observation that many types of real-world signals and images 

have a sparse expansion in terms of a suitable basis or frame, for instance a wavelet expansion. This means that 

the expansion has only a small number of significant terms, or in other words, that the coefficient vector can be 

well-approximated with one having only a small number of non vanishing entries. The support of a vector x is 

denoted supp(x) = {j : xj ≠ 0}, and  

||x||0 := |supp(x)|.                                                               (1) 

A vector x is called k-sparse if ||x||0  ≤ k. For k ∈{1,2,...,N},  

Σk := {x ∈ C
N
 : ||x||0 ≤ k}                                                    (2) 

denotes the set of k-sparse vectors. Furthermore, the best k-term approximation error of a vector x ∈ C
N
 in ℓp is 

defined as 

 σk(x)p = inf z∈Σ||x−z||p.                                                         (3) 

If σk(x) decays quickly in k then x is called compressible. Indeed, in order to compress x one may simply store 

only the k largest entries. When reconstructing x from its compressed version the non stored entries are simply 

set to zero, and the reconstruction error is σk(x)p. It is emphasized at this point that the procedure of obtaining 

the compressed version of x is adaptive and nonlinear since it requires the search of the largest entries of x in 

absolute value. In particular, the location of the non-zeros is a nonlinear type of information.  
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2.2 Incoherence 

Coherence measures the maximum correlation between any two elements of two different matrices. These two 

matrices might represent two different basis/representation domains. 

If  Ψ is a n×n matrix with Ψ1,….. ΨN, as columns and Φ is an  

m × n matrix with Φ1………. Φm   as rows[2]. Then, coherence μ is defined as 

μ(Φ ,Ψ)=  max| Φk ,Ψj |                                                    (4) 

for 1<=j<j and 1<=k<=m. It follows from linear algebra that 

1< μ(Φ ,Ψ)<=                                                                            

 

2.3 Mathematical Model 

Let us consider a real-valued, finite-length, one dimensional, discrete-time signal X, which we view as an N × 1 

column vector with elements x[n] ,  n=1, 2, . . . , N. 

 Any signal can be represented in terms of a basis of N × 1 vectors {Ψi }, i = 1: N. 

We assume basis is orthonormal. Forming N X N basis matrix Ψ:= Ψ1,….. ΨN  We can express signal X  as 

X=Ʃ 
N

I=1  ai Ψi            or  X=a Ψ                                                 (5) 

Where a is N × 1 column vector where its obtained by keeping only the terms corresponding to the k largest 

values of X(i). 

We focus on signals that have sparse representation, where X is a linear combination of just k basis vectors, with 

K << N. That is only with K  non zero and (N-K) are zero. We call K sparse such object with most K non zero 

entries[3]. Let A denote M × N  measurement matrix which is obtained with randn function to which K and N 

are inputs, A with vectors Φ1
*
……. ΦM

*
as rows. Then observation vector Y is obtained with help of equation 

Y=A X a0                                                                                                                  (6) 

Then the reconstruction algorithm OMP is used to reconstruct the audio signal using observation vector Y, 

sparsity level k. Initially in reconstruction method assign residual with observation vector Ro=y 

Then calculate the inner product with equation 

Gn=A
T
rn-1                                                                              (7) 

where A
T
 is transpose of Measurement matrix A, rn-1 is previous residual. 

 

Figure 1.Compressive Sensing Block Diagram 

Then find the index K that solves the optimization problem: K=arg max |gn[i]| i={1,2…n} Obtain a new signal 

estimate and calculate the new approximation of the new residual: 
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xn[k]=xn-1[k]+gn[k]                                                                (8) 

rn=rn-1 – gn[k]AK                                                                                                          (9) 

With this the reconstructed audio signal is obtained with same number of samples as that of input audio signal. 

 

2.4 The Restricted Isometry Property 

In linear algebra, an orthogonal matrix is a square matrix with real entries whose columns and rows are 

orthogonal unit vectors (i.e., orthonormal vectors), i.e. A
T 

A = A A
T
 = I , where I is the identity matrix.  

This leads to the equivalent characterization: a matrix A is orthogonal if its transpose is equal to its inverse; i.e., 

A
T 

= A
−1 

. The determinant of any orthogonal matrix is either +1 or −1. As a linear transformation, an orthogonal 

matrix preserves the dot product of vectors, and therefore acts as an isometry of Euclidean space, such as a 

rotation or reflection[4]. 

 

Figure 2. Unit spheres in R
2
 for the lp norms with p =1;2;∞ , and for the l p quasi-norm with p = 

0.5 . (a) Unit sphere for l1 norm; (b) Unit sphere for  l2 norm; (c) Unit sphere for l∞ norm; (d) 

Unit sphere for l p quasi norm 

 

Figure 3. Best approximation of a point in R
2 
by a one-dimensional subspace using l p norms 

with  lp =1;2;∞ , and the l p quasi-norm with p = 0.5  (a) Approximation in l1 norm; (b) 

Approximation in l2 norm; (c) Approximation in l∞ norm; (d) Approximation in l p quasi-

norm. 

 

2.5 Explicit  Constructions  of  Sensing  Matrices 

In technical literature, more attention has been paid to random sensing matrices generated by identical and 

independent distributions (i.i.d.) such as Gaussian, Bernoulli, and random Fourier ensembles, to name a few [6]. 

Their applications have been shown in medical images processing and other various signal processing problems 

. Even though random sensing matrices ensure high probability in reconstruction, they also have many 

drawbacks such as excessive complexity in reconstruction, significant space requirement for storage, and no 

efficient algorithm to verify whether a sensing matrix satisfies RIP property with small RIC value. Table 1 

illustrates the comparison between random sensing and deterministic sensing . 
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Table 1. Comparison Between Random Sensing and Deterministic Sensing 

Random Sensing Deterministic Sensing 

Outside the mainstream of signal 

processing: worst case signal 

processing 

Aligned with the mainstream of 

signal processing: 

average case signal processing 

Less efficient recovery time More efficient recovery time 

No explicit constructions  explicit constructions 

Larger storage Efficient Storage 

Looser recovery bounds Tight recovery bounds 

Hence, exploiting specific structures of deterministic sensing matrices is required to solve these problems of the 

random sensing matrices. Recently, several deterministic sensing matrices have been proposed [4]. We can 

classify them into two categories. First are those matrices which are based on coherence . Second are those 

matrices which are based on RIP or some weaker RIPs . More recently in some highlighted results such as 

deterministic construction of sensing matrices via algebraic curves over finite fields in term of coherence and 

chirp sensing matrices have been introduced. 

 

2.6 Reconstruction Model 

In CS, we are concerned with the incoherence of matrix used to sample/sense signal of interest (hereafter 

referred as measurement matrix Φ) and the matrix representing a basis, in which signal of interest is sparse 

(hereafter referred as representation matrix Ψ ). Within the CS framework, low coherence between Φ and Ψ 

translates to fewer samples required for reconstruction of signal. 

Taking m linear measurements of a signal x ∈ CN corresponds to applying a matrix A ∈ C
m×N 

— the 

measurement matrix  

y = Ax.                                                                               (10) 

The vector y ∈ C
m
 is called the measurement vector. The main interest is in the vastly undersampled case m ≪ 

N. Without further information, it is, of course, impossible to recover x from y since the linear system Eq (10) is 

highly underdetermined, and has therefore infinitely many solutions. However, if the additional assumption that 

the vector x is k-sparse is imposed, then the situation dramatically changes as will be outlined. The approach for 

a recovery procedure that probably comes first to mind is to search for the sparsest vector x which is consistent 

with the measurement vector y = Ax. This leads to solving the ℓ0-miminization problem 

Min||z||0 subject to Az = y                                                  (11) 

Unfortunately, this combinatorial minimization problem is NP–hard in general [9]. In other words, an algorithm 

that solves Eq (11) for any matrix A and any right hand side y is necessarily computationally intractable. 

Therefore, essentially two practical and tractable alternatives to Eq (11) have been proposed in the literature: 

convex relaxation leading to ℓ1-minimization — also called basis pursuit [12] and greedy algorithms, such as 

various matching pursuits [11]. Quite surprisingly for both types of approaches various recovery results are 

available, which provide conditions on the matrix A and on the sparsity ||x||0 such that the recovered solution 

coincides with the original x, and consequently also with the solution of Eq (11). This is no contradiction to the 

NP–hardness of Eq (11) since these results apply only to a subclass of matrices A and right-hand sides y. The 

ℓ1-minimization approach considers the solution of  
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Min||z||1 subject to Az = y,                                                  (12)  

which is a convex optimization problem and can be seen as a convex relaxation of  Eq (11).  

It is another important feature of compressive sensing that practical reconstruction can be performed by using 

efficient algorithms. Since the interest is in the vastly under sampled case, the linear system describing the 

measurements is underdetermined and therefore has infinitely many solution. The key idea is that the sparsity 

helps in isolating the original vector. The first naive approach to a reconstruction algorithm consists in searching 

for the sparsest vector that is consistent with the linear measurements. This leads to the combinatorial ℓ0-

problem, see Eq (11) below, which unfortunately is NP-hard in general. There are essentially two approaches for 

tractable alternative algorithms. The first is convex relaxation leading to ℓ1-minimization also known as basis 

pursuit, see Eq (12) while the second constructs greedy algorithms. This overview focuses on ℓ1-minimization. 

By now basic properties of the measurement matrix which ensure sparse recovery by ℓ1-minimization are 

known: the null space property (NSP) and the restricted isometry property (RIP). The latter requires that all 

column sub- matrices of a certain size of the measurement matrix are well-conditioned. This is where 

probabilistic methods come into play because it is quite hard to analyze these properties for deterministic 

matrices with minimal amount of measurements. Among the provably good measurement matrices are 

Gaussian, Bernoulli random matrices, and partial random Fourier matrices. 

 

Figure 4 (a) 10-sparse Fourier spectrum, (b) time domain signal of length 300 with 30 samples, 

(c) reconstruction via ℓ2-minimization, (d) exact reconstruction via ℓ1-minimization 

Currently the reconstruction algorithms are classified as three categories. One is the greedy algorithms, 

including the matching pursuit algorithms such as MP (Matching Pursuit), OMP(Orthogonal Matching Pursuit) , 

StOMP (Stagewise Orthogonal Matching Pursuit),CoSaMP (Compressive Sampling Matching Pursuit),and the 

gradient pursuit algorithms such as GP (Gradient Pursuit) and CGP (Conjugate Gradient Pursuit) .The second 

one is the convex relaxation, especially the projected gradient methods, iterative thresholding, Iterative hard 

thresholding, Bregman iterative algorithms, Basis Pursuit and Basis Pursuit De- Noising, the Least Absolute 

Shrinkage and Selection Operator (LASSO). The third is combinatorial algorithms. These methods acquire 
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highly structured samples of the signal that support rapid reconstruction via group testing. Fourier sampling, 

chaining pursuit, and HH Pursuit. 

The idea of Reconstruction In order to achieve an optimal recovery algorithm, there are several requirements 

that should be satisfied. The requirements are illustrated as below: 

 (1) Stability. The algorithm should be stable. That means when the signals or the measurements are perturbed 

slightly by noise, recovery should still be approximately accurate. 

 (2) Fast. The algorithm should be fast if we want to apply it into practice.  

(3) Uniform guarantees. When acquiring linear measurements by using a specific method, these linear 

measurements can apply to all sparse signals.  

(4) Efficiency. The algorithm should require as few measurements as possible.  

  

2.6 Null Space Conditions and Thresholds for Rank Minimization 

Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications 

in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank 

minimization, is NPHARD, and for most practical problems there are no efficient algorithms that yield exact 

solutions. A popular heuristic replaces the rank function with the nuclear norm—equal to the sum of the singular 

values—of the decision variable and has been shown to provide the optimal low rank solution in a variety of 

scenarios .It deals with the problem of recovering matrices of low ranks from compressed linear measurements 

through a heuristic of nuclear norm minimization. We assessed the practical performance of this heuristic for 

finding the minimum rank matrix subject to linear constraints. By characterizing a necessary and sufficient 

condition for the nuclear norm minimization to succeed, we provided the probabilistic performance bounds on 

the ranks as a function of the matrix dimensions and the number of constraints, for which the nuclear norm 

minimization heuristic succeeds with overwhelming probability[12]. The performance bounds we derived are 

tight in some regimes, especially the number of measurements and provided accurate predictions of the 

heuristic’s performance in non-asymptotic scenarios. This suggests that a different parameterization of the null 

space of A could be the key to a better bound for small values of β. For large values of β, the bound is a rather 

good approximation of empirical results, and it might not be possible to further tighten this bound. 

 

2.7 Applications 

The fact that a compressible signal can be captured efficiently using a number of incoherent measurements that 

is proportional to its information level S<<n has implications zthat are far reaching and concern a number of 

possible applications: 

 Data compression. In some situations, the sparse basis Ψ may be unknown at the encoder or impractical to 

implement for data compression. Φ can be considered a universal encoding strategy, as it need not be designed 

with regards to the structure of Ψ . (The knowledge and ability to implement. This universality may be 

particularly helpful for distributed source coding in multi-signal settings such as sensor networks [7]. 

Channel coding. CS principles (sparsity, randomness, and convex optimization) can be turned around and 

applied to design fast error correcting codes over the reals to protect from errors during transmission.  

Inverse problems. In still other situations, the only way to acquire f may be to use a measurement system Φ of a 

certain 
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modality. However, assuming a sparse basis Ψ exists for f that is also incoherent with Φ, then efficient sensing 

will be possible. One such application involves MR angiography  and other types of MR setups [8], where Φ 

records a subset of the Fourier transform, and the desired image f is sparse in the time or wavelet domains.  

Data acquisition. Finally, in some important situations the full collection of n discrete-time samples of an analog 

signal may be difficult to obtain (and possibly difficult to subsequently compress). Here, it could be helpful to 

design physical sampling devices that directly record discrete, low-rate incoherent measurements of the incident 

analog signal. 

Analog to Information Conversion: Analog to-digital converters: (ADC) have been used in sensing and 

communications due to the advancement in digital signal processing. The process of ADC is based on the 

Nyquist sampling theorem which uniformly samples the signal with a rate of at least twice its bandwidth in 

order to reconstruct the signal perfectly. Emerging applications like radar detection and ultra-wideband 

communication are pushing the limit. 

 

III. CONCLUSION 

 

Compressive sensing (CS) is a novel sampling paradigm that samples signals in a much more efficient way than 

the established Nyquist sampling theorem. CS has recently gained a lot of attention due to its exploitation of 

signal sparsity .It gives a brief background on the origin, reviews the basic mathematical foundation. Numerous 

reconstruction algorithms aiming to achieve computational efficiency and high speeds are developed. Sparse 

recovery minimization, Null Space Conditions with Thresholds for Rank Minimization in compressive sensing 

scheme are analysed. With linear decoding complexity, deterministic performance guarantees of linear sparsity 

recovery, and explicitly constructible measurement matrices for the sparse signals. 
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