
International Journal of Electrical and Electronics Engineers ISSN- 2321-2055 (E)

http://www.arresearchpublication.com IJEEE, Volume 07, Issue 01, Jan- June 2015

427 | P a g e

DYNAMIC MEMORY MANAGEMENT FOR FPGA-

BASED RECONFIGURABLE ARCHITECTURES

Miss. Bhagyashri Sayajirao Patil
1
, Miss. ShitalArjun Shivdas

2
,

Prof. (Mrs.) M. M. Raste
3

1,2
VLSI & Embedded System, ADCET Ashta, (India)

3
Assistant Professor, VLSI & Embedded System, ADCET Ashta, (India)

ABSTRACT

In this paper, an adaptive architecture for dynamic management and allocation of on-chip FPGA Block

Random Access Memory (BRAM) resources is presented. This facilitates the dynamic sharing of valuable

and scarce on-chip memory among several processing elements (PEs), according to their dynamic run-

time memory requirements. The proposed scalable BRAM memory management architecture adaptively

manages these dynamic memory requirements and balances the buffer memory over several PEs to

reduce the total memory required, compared to the worst-case memory footprint for all PEs. The

runtime adaptive system allocates BRAM to each PE sufficiently fast enough as required and utilized.

The proposed system suited for the dynamic memory footprints of FPGA-based reconfigurable

architectures.

Keywords- Block Random Access Memory (BRAM), Dynamic On-chip Memory Management

Unit (DOMMU), Dynamic Partial Reconfiguration (DPR), Processing Elements (PEs).

1. INTRODUCTION

With the increasing complexity and performance requirements of real-time embedded systems and the

advances in FPGA technology, came the advent of multi-processor architectures and, more recently, of

reconfigurable computing. Reconfigurable computing exploits the reconfiguration capabilities of FPGA

devices to reconfigure the resources on the FPGA to modify and adapt the functionality of these resources

to a specific application or computation that needs to be performed. More recently, dynamic partial

reconfiguration (DPR) of FPGAs provided the possibility to specify and constrain certain partitions on an

FPGA such that they can execute different tasks at different points in time without consuming

additional area.

One main challenge of dynamic reconfigurable computing is the efficient assignment of resources to

different partitions, such as the scarce and valuable block random access memory (BRAM), which is

often a limiting factor in the design of complex embedded systems. Modules designed to occupy the

same physical partition on FPGA can only utilize the on-chip BRAM resources within this partition,

which are often not sufficient for memory-intense applications. However, this imposes many physical

International Journal of Electrical and Electronics Engineers ISSN- 2321-2055 (E)

http://www.arresearchpublication.com IJEEE, Volume 07, Issue 01, Jan- June 2015

428 | P a g e

design constraints on the FPGA-based implementation, and reduces its potential for flexibility and

reconfigurability. Moreover, local on-chip memory is almost always the preferred memory choice for

real-time applications, since it is the lowest latency (one clock cycle), fastest, and highest bandwidth

memory solution available. Hence, it becomes necessary to design the system using maximum worst-

case memory footprint estimates, but such static memory allocation is inefficient and would impose

excessive area and power consumption overheads. Dynamic memory management is needed to enhance

the gains of reconfigurable computing by meeting the dynamic context dependent memory requirements

of embedded reconfigurable applications and to avoid costly static memory allocations at design-time.

In this proposed paper, a Dynamic On-chip Memory Management Unit (DOMMU) which is customized

to target the run-time dynamic management of on-chip BRAM to parallel FPGA-based PEs, according to

their dynamic runtime memory footprints. DOMMU is designed with flexible user-configurability and

scalability. It supports automated BRAM (de)allocation, which ensures that memory management remains

transparent to the PEs. Support for sharing BRAM between PEs is also integrated, and can be extended

to support additional BRAM configuration types.

II DESIGN GOALS AND FUNCTIONALITY OF DOMMU

For DOMMU to dynamically manage on-chip memory allocation of PEs in reconfigurable computing, it

has to meet the following requirements:

2.1 Dynamic Memory (De) AlIocation

Static memory allocation architectures often force PEs to reserve enough BRAM to cover worst-case

requirements and to resort to off-chip memory for more. In typical cases, significantly less than worst-

case memory is required, and the worst-case buffer can be provided for other PEs while unused. This

dynamic sharing and allocation of memory can reduce the total memory required at run-time and

improve BRAM utilization. However, dynamic allocation should be guaranteed to occur faster than the

first access of the PE to this BRAM to ensure that memory requirements are served with quality.

2.2Transparency

An important design goal is to decouple the internal functionality of DOMMU from the PEs using it. Therefore,

DOMMU's interface as well as its behavior and timing performance has to be identical to that of

traditional BRAM access. This is achieved by BRAM virtual address mapping which is transparent to

the PEs, and maintaining a single clock cycle latency for BRAM access. Moreover, it is necessary to

provide all the PEs with access to their allocated BRAM simultaneously via independent dedicated

channels without any bandwidth sharing. To provide a PE transparently with memory when it is needed,

automated dynamic BRAM (de)allocation is realized which should be enabled or disabled for different

PEs independently at run-time, according to the application requirements.

International Journal of Electrical and Electronics Engineers ISSN- 2321-2055 (E)

http://www.arresearchpublication.com IJEEE, Volume 07, Issue 01, Jan- June 2015

429 | P a g e

2.3Scalability

 DOMMU has to be designed with user-configured parameters to make it reusable and scalable in terms

of the number of memory ports, number of BRAMs managed, their types and configurations. Moreover,

the required hardware resources have to scale well with increasing numbers of memory ports and

managed BRAMs. Additionally, the design has to provide integrated support for shared BRAM for

communication between PEs through dual-port BRAM access, and should be extensible to integrate

application-specific BRAM type templates.

2.4 Conservation of an optimal point in design space

 Since DOMMU replaces static allocation of BRAMs, the design space exploration for the architecture

using DOMMU has to consider bandwidth, latency and hardware resources. Independent dedicated

channels between PEs and their associated BRAMs assure a latency of one clock cycle for memory

accesses. In order not to outweigh the gains of DOMMU, the hardware resources have to be kept

minimal. This preserves the point in the design space of the original architecture, while enabling

efficient utilization of BRAM resources by dynamic management.

III PROPOSED DESIGN

Fig. 1: Illustration of the general system overview of DOMMU

In Fig. 1, each PE is assigned one or more memory ports, by the user at design-time. These memory ports

interface with DOMMU for BRAM (de)allocation and access. Memory ports share access to N BRAM

elements via an interconnection network as shown in Fig. 1.

To manage this dynamic sharing while keeping the BRAM management transparent to the PEs, it must

keep track of the BRAM configurations (width and depth) available "in stock", the BRAM assigned to

each PE, the configuration details of this BRAM, how often the BRAM is accessed, and how much

more or less BRAM is required by each PE at any point in time. To keep the BRAM management

transparent to the PEs, an address mapping scheme ensures correct PE-BRAM association.

International Journal of Electrical and Electronics Engineers ISSN- 2321-2055 (E)

http://www.arresearchpublication.com IJEEE, Volume 07, Issue 01, Jan- June 2015

430 | P a g e

IV BRAM ORGANIZATION AND ADDRESS TRANSLATION SCHEME

Fig. 2: Logical to physical address translation scheme of DOMMU

The set of BRAM elements shown in Fig. 2 and their physical configurations is the BRAM physical address

space, which is realized by initializing a subset of the available BRAM resources on the device in

different configurations (width X depth) depending on the design requirements.

To provide transparency to the PEs, the BRAM elements are also arranged in a logical address space,

in the form of logical pages. Concepts of logical addressing and paging are borrowed from software

memory management of operating systems, and employed similarly in the design of DOMMU. Each

memory port is assigned a logical page which can be assigned up to X BRAM elements as shown in

Figure 2. The BRAM elements are assigned a Logical Identification (LID) according to their order of

assignment within the logical page. These LIDs are assigned at run-time independently of the Physical

ID (PIDs) of the BRAM elements managed by DOMMU. Each memory port should "know" its logical

page, its word width and depth. Each PE accesses its allocated BRAM by communicating the logical

addresses via its memory port(s) to the DOMMU. The logical address is mapped to the physical address

(BRAM PID and offset within the BRAM element) to access the correct data word. DOMMU interfaces

with the PEs via the memory ports shown in Fig. 2, which introduces a degree of freedom to assign

more than one memory port for each PE at design-time.

International Journal of Electrical and Electronics Engineers ISSN- 2321-2055 (E)

http://www.arresearchpublication.com IJEEE, Volume 07, Issue 01, Jan- June 2015

431 | P a g e

V ARCHITECTURE OF DOMMU

Fig. 3: Block diagram of DOMMU architecture

A detailed block diagram of DOMMU and its components is illustrated in Fig. 3.

5.1 Crossbar (XBAR) switch

The PE> BRAM interconnection network required in DOMMU must allow all PEs to be physically

able to access all the configured BRAM elements. Bi-directional communication is required to support

both read and write access, as well as non-blocking switching to ensure that multiple simultaneous PE

> BRAM interconnections can always be established. The crossbar switch satisfies these requirements.

The original idea was to dynamically reconfigure the FPGA routing resources to implement the crossbar

switch, or implementing the crossbar multiplexers using LUTs and reconfiguring their configuration

contents by bit stream manipulation via internal dynamic partial reconfiguration of the corresponding

FPGA configuration frames, in order to control the multiplexed output. However, for ease of initial

implementation and proof-of-concept, the crossbar is implemented in this work using regular

multiplexers. It is realized using two crossbars: a unidirectional (PE BRAM) crossbar for writing to

BRAM, and a bi-directional (PE > BRAM) crossbar for reading from BRAM.

5.2 Address translator (BRAT)

The PEs communicate with the BRAMs by logical addresses. Hence, each memory port is assigned a BRAM

Address Translator (BRAT), which performs the functionality described in Fig. 2.

International Journal of Electrical and Electronics Engineers ISSN- 2321-2055 (E)

http://www.arresearchpublication.com IJEEE, Volume 07, Issue 01, Jan- June 2015

432 | P a g e

When a read or write access request is received through a memory port (orange/dashed path in Fig. 3),

BRAT maps this memory port to the associated logical page by queuing an array which maps each port

to its corresponding logical page and the allowed access credentials (RD, WR, or RDIWR) of this

memory port to this page. If the address is out-of-bounds or involves illegal access, the incoming

address is rejected, and the PE is flagged for requesting an illegal access. This feature enforces implicit

memory access rights to ensure that each PE can only access its assigned memory.

BRAT also receives incoming control requests from a controller to update its stored arrays for new

(de)allocations. ACKINACK message reporting the status and details of each request is returned to the

controller. Errors such as a full logical page that cannot be allocated more BRAM or an empty page that

cannot be (de)allocated from are handled by returning the corresponding NACK message back to the

controller. In general, all incoming control requests are acknowledged with ACKINACK response

messages communicated to the controller which indicate the details of status of the request. BRA T also

keeps track of the logical page associated with each memory port, and the details of each logical page,

such as its access credentials, word width, allowed maximum and actual depth. All details about the

BRAM elements assigned to each page are also stored to ensure correct PE-BRAM association, correct

logical-to-physical address mapping, and detection of illegal accesses.

5.3 Arbiter- Arbitration using adaptive, dynamic and user configurable priorities was implemented,

since this was most suited for dynamic reconfigurable systems. The scheduling priorities associated with

these PEs are dynamic and can change at run-time. Every memory port is assigned a priority, which is

one of the three levels: low, medium or high, and this priority level is assigned as static or dynamic

either at design-time or run-time. A static priority maintains its default value throughout operation, unless

it gets re-assigned explicitly by the PE. At every clock cycle, all incoming requests from all memory

ports are read and arbitration selects the request to serve. If the waiting time of a request exceeds a

userconfigured threshold and if the priority of that port is dynamic, then the corresponding priority is

upgraded to the next level. The dynamic priority of a memory port also gets downgraded if its pending

request gets served, and its request waiting time is smaller than a user-configured threshold.

Configurable and dynamic priority arbitration is suitable for real-time embedded systems in which some

running applications are more time critical than others, and scheduling priorities can be adjusted

accordingly. Hierarchical arbitration is implemented in which higher priority is always reserved for all

allocation requests followed by a lower priority for all (de)allocation requestsbecause allocation requests are

more critical to the PE. Within every level of hierarchy, the assigned priorities are examined to

schedule the highest priority request to be first served. Latency overhead due to arbitration is unavoidable yet

critical, since it is a significant factor in the latency incurred in serving memory allocation requests,

which is crucial for scheduling memory requests associated with real-time applications. Arbitration

latency has a deterministic maximum which is a function of the number of PE memory ports configured

and the maximum number of BRAM elements that can be requested at one time by any memory port.

This latency should be considered when scheduling BRAM allocation requests, and is guaranteed, when

dynamic automated BRAM allocation is enabled, to remain below the first access of the PE to the

International Journal of Electrical and Electronics Engineers ISSN- 2321-2055 (E)

http://www.arresearchpublication.com IJEEE, Volume 07, Issue 01, Jan- June 2015

433 | P a g e

requested BRAM. This overhead can be reduced by minimizing the arbiter logic and dynamism.

Moreover, more aggressive pipelining can be attempted in order to serve multiple BRAM requests at

one time, although in the current architecture design this would result in inconsistencies in shared data

arrays.

5.4 Memory Port Manager

Each PE memory port that interfaces with DOMMU consists of a dedicated BRAM access port and a

control port for (de)allocation control requests. The BRAM access port constitutes of two independent ports.

Data can be read from or written to one or both of them simultaneously which enables access of

single-port BRAM as well as dual-port BRAM for double the bandwidth, and supports inter-PE

communication, which is often required in real-time image processing applications. If a PE requires more

BRAM bandwidth, additional memory ports can be configured for it. The control port is assigned a memory

port manager which matches the requested BRAM type, word width, and number of words to the

closest BRAM configuration (width X depth) available. This ensures that the internal BRAM

management and configuration details remain transparent to the PE. Since this mapping is embedded

and time-critical, and has to occur with minimal impact on timing performance and area overhead, this

limits the maximum complexity of the methodology and logic implemented. There is no optimal

resolution to this mapping problem due to the different optimization factors that can be considered

such as speed, power or area utilization. Themethodology implemented in this work selects the match that

minimizes in the number of BRAM elements assigned.

Automated dynamic (de)allocation of BRAM is one of the distinguishing features of DOMMU. This

allows additional BRAM to be requested for allocation automatically when the assigned BRAM for the

memory port is close to running out. This is indicated when the number of BRAM addresses that get

written to, increase beyond a user-configured threshold. If the assigned BRAM remains idle. Dynamic

(de)allocation can be enabled or disabled by each port manager at run-time according to the application

requirements. This feature is based upon several simplifying assumptions that every incoming read/write

access is a valid one, that every incoming write access is associated with a new BRAM address, and that

when the number of idle cycles exceeds a certain threshold, that this BRAM is not required by the

memory port anymore, and should be (de)allocated.

The currently supported control requests a PE can issue via a memory port to its memory port

manager are allocating a new single-port or shared BRAM logical page, (de)allocating a BRAM logical

page, or a requested number of words from a logical page, or assigning a new priority to the

concerned memory port. The parameters required for each request depend on the request code issued, and

each request is acknowledged by a response message which indicates the details of the granted/denied

request.

International Journal of Electrical and Electronics Engineers ISSN- 2321-2055 (E)

http://www.arresearchpublication.com IJEEE, Volume 07, Issue 01, Jan- June 2015

434 | P a g e

VI CONCLUSION

In this paper, a Dynamic On-chip Memory Management Unit (DOMMU) is proposed to support

dynamic BRAM sharing among several processing elements in FPGA-based dynamic reconfigurable

architectures, such that the BRAM allocation and utilization adapt to the variable run-time memory

footprints of the PEs. A dynamic fine-grain control of BRAM (de)allocation, as opposed to previous

static traditional approaches is introduced, as well as a virtual BRAM addressing scheme, and an

automated dynamic memory (de)allocation algorithm, thus making DOMMU superior to previous

architectures in terms of scalability, flexibility and its usability for reconfigurable computing in

particular.

REFERENCES

[1] M. Majer, J. Teich, A.Ahmadinia, and C. Bobda, "The Erlangen slot machine: A dynamically

reconfigurable FPGA-based computer," The Journal of VLSI Signal Processing Systems for Signal,

Image, and Video Technology, vol. 47, no.I, pp. 15-31,2007.

[2] I. Koutras, A.Bartzas, and D. Soudris, "Adaptive dynamic memory allocators by estimating application

workloads," in 2012 International Conference on Embedded Computer Systems (SAMOS). IEEE,

2012, pp.252-259.

[3] D. Goehringer, L. Meder, M. Hubner, and J. Becker, "Adaptive multiclient network-on-chip memory,"

in 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig), 2011, pp. 7-

12.

[4] l. Anagnostopoulos, S. Xydis,A. Bartzas, Z. Lu, D. Soudris, and A. Jantsch, "Custom microcoded

dynamic memory management for distributed on-chip memory organizations," IEEE Embedded

Systems Letters, vol. 3, no. 2, pp. 66-69, 2011.

[5] M. ShalanandY. 1. Mooney, "A dynamic memory management unit for embedded real-time system-

on-a-chip," in International Conference on Compilers, Architecture and Synthesis for Embedded

Systems, 2000, vol. 17, no. 19, 2000, pp. 180-186.

[6] C. H. Hoo and A. Kumar, "An area-efficient partially reconfigurable crossbar switch with low

reconfiguration delay," in 22nd 2012 International Conference on Field Programmable Logic and

Applications (FPL), Aug 2012, pp. 400-406.

