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ABSTRACT 

In this  paper, an  adaptive  architecture  for  dynamic management  and  allocation  of  on-chip  FPGA  Block  

Random Access  Memory  (BRAM)  resources  is  presented.  This  facilitates the  dynamic  sharing  of  valuable  

and  scarce  on-chip  memory among  several  processing  elements  (PEs),  according  to  their dynamic  run-

time  memory  requirements.  The  proposed scalable  BRAM  memory  management  architecture  adaptively 

manages  these  dynamic  memory  requirements  and  balances  the buffer  memory  over  several  PEs  to  

reduce  the  total  memory required,  compared  to  the  worst-case  memory  footprint  for  all PEs.  The  

runtime  adaptive  system  allocates  BRAM  to  each  PE sufficiently  fast  enough  as  required  and  utilized. 

The  proposed  system  suited  for the  dynamic  memory  footprints  of  FPGA-based  reconfigurable 

architectures. 

Keywords- Block  Random Access  Memory  (BRAM), Dynamic  On-chip Memory  Management  

Unit  (DOMMU), Dynamic  Partial  Reconfiguration  (DPR), Processing  Elements  (PEs). 

1. INTRODUCTION  

With  the  increasing  complexity  and  performance  requirements  of  real-time  embedded  systems  and  the  

advances  in FPGA  technology,  came  the  advent  of  multi-processor  architectures  and,  more  recently,  of  

reconfigurable  computing.  Reconfigurable  computing  exploits  the  reconfiguration  capabilities  of FPGA 

devices to  reconfigure the resources  on the FPGA to  modify  and  adapt  the  functionality  of  these  resources  

to a specific  application  or  computation  that  needs  to  be  performed.  More  recently,  dynamic  partial  

reconfiguration  (DPR)  of FPGAs provided the  possibility  to  specify and constrain certain partitions  on  an  

FPGA  such  that  they  can  execute  different tasks  at  different  points  in  time  without  consuming  

additional area.  

One  main  challenge  of  dynamic  reconfigurable  computing is  the  efficient  assignment  of  resources  to  

different  partitions, such  as  the  scarce  and  valuable  block  random  access  memory (BRAM),  which  is  

often  a  limiting  factor  in  the  design  of complex  embedded  systems. Modules  designed  to occupy  the  

same  physical  partition  on  FPGA  can  only  utilize the  on-chip  BRAM  resources  within  this  partition,  

which are  often  not  sufficient  for  memory-intense  applications.  However,  this  imposes  many  physical  
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design  constraints on  the  FPGA-based  implementation,  and  reduces  its  potential for  flexibility  and  

reconfigurability. Moreover,  local  on-chip memory  is  almost  always  the  preferred  memory  choice  for 

real-time  applications,  since  it  is  the  lowest  latency  (one clock  cycle),  fastest,  and  highest  bandwidth  

memory  solution available.  Hence,  it  becomes  necessary  to  design  the  system  using  maximum  worst-

case  memory  footprint  estimates, but  such  static  memory  allocation  is  inefficient and  would impose  

excessive  area  and  power  consumption  overheads. Dynamic memory management is  needed  to  enhance  

the  gains of  reconfigurable  computing  by  meeting  the  dynamic  context dependent  memory  requirements  

of  embedded  reconfigurable applications  and  to  avoid  costly  static  memory  allocations  at design-time.  

In  this  proposed paper,  a  Dynamic  On-chip Memory  Management  Unit  (DOMMU)  which  is  customized 

to  target  the  run-time  dynamic  management of  on-chip  BRAM to  parallel  FPGA-based  PEs,  according  to  

their  dynamic  runtime  memory  footprints.  DOMMU  is  designed  with  flexible  user-configurability  and  

scalability.  It  supports  automated BRAM  (de)allocation,  which  ensures  that  memory  management  remains  

transparent  to  the  PEs.  Support  for  sharing BRAM between  PEs  is  also  integrated,  and  can  be extended  

to support  additional  BRAM  configuration  types.   

II DESIGN GOALS AND FUNCTIONALITY OF DOMMU  

For  DOMMU  to  dynamically  manage  on-chip  memory allocation  of  PEs  in  reconfigurable  computing,  it  

has  to  meet the  following  requirements:  

2.1 Dynamic  Memory  (De) AlIocation 

Static  memory  allocation  architectures  often  force  PEs  to reserve  enough  BRAM  to  cover  worst-case  

requirements  and to  resort  to  off-chip  memory  for  more.  In  typical  cases, significantly  less  than  worst-

case  memory  is  required,  and  the worst-case buffer  can  be  provided  for  other  PEs  while unused. This  

dynamic  sharing  and  allocation  of  memory  can  reduce the  total  memory  required  at  run-time  and  

improve  BRAM utilization.  However,  dynamic  allocation  should  be  guaranteed to  occur  faster  than  the  

first  access  of  the  PE  to  this  BRAM to  ensure  that  memory  requirements  are  served  with  quality.  

2.2Transparency 

An important design goal is to decouple the internal functionality of DOMMU from the PEs using it.  Therefore,  

DOMMU's interface  as  well  as  its  behavior and  timing  performance  has to  be  identical  to  that  of  

traditional  BRAM  access.  This  is achieved  by  BRAM  virtual  address  mapping  which  is  transparent  to  

the  PEs,  and  maintaining a  single  clock  cycle  latency for  BRAM  access.  Moreover,  it  is  necessary  to  

provide  all the  PEs  with  access  to  their  allocated  BRAM  simultaneously via  independent  dedicated  

channels  without  any  bandwidth sharing.  To  provide  a  PE  transparently  with  memory  when it  is  needed,  

automated  dynamic  BRAM  (de)allocation  is realized  which  should  be  enabled  or  disabled  for  different 

PEs  independently  at  run-time,  according  to  the  application requirements.  
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2.3Scalability 

 DOMMU  has  to  be  designed  with  user-configured  parameters to  make  it  reusable  and  scalable  in  terms  

of  the  number of  memory  ports,  number  of  BRAMs  managed,  their  types and  configurations.  Moreover,  

the  required  hardware  resources have  to  scale  well  with  increasing  numbers  of  memory  ports and  

managed  BRAMs.  Additionally,  the  design  has  to  provide  integrated  support  for  shared  BRAM  for  

communication between  PEs  through  dual-port  BRAM  access,  and  should be  extensible  to  integrate  

application-specific  BRAM  type templates.  

2.4 Conservation of an  optimal  point  in  design  space 

 Since  DOMMU  replaces  static  allocation  of  BRAMs,  the  design space exploration for the  architecture 

using DOMMU has  to  consider  bandwidth,  latency  and  hardware  resources. Independent  dedicated  

channels  between  PEs  and  their  associated  BRAMs  assure  a  latency  of  one  clock  cycle  for  memory 

accesses.  In  order  not  to  outweigh  the  gains  of  DOMMU,  the hardware  resources  have  to  be  kept  

minimal.  This  preserves the  point  in  the  design  space  of  the  original  architecture,  while enabling  

efficient  utilization  of  BRAM  resources  by  dynamic management. 

III PROPOSED  DESIGN 

 

Fig. 1:  Illustration of the general system overview of DOMMU 

In Fig. 1, each PE is assigned one or more memory ports, by the user at design-time.  These memory ports 

interface with DOMMU for BRAM (de)allocation and access.  Memory ports share access to N BRAM 

elements via an interconnection network as shown in Fig. 1.  

To manage this  dynamic  sharing  while keeping  the  BRAM management  transparent  to  the  PEs,  it  must  

keep  track  of  the BRAM  configurations  (width  and  depth)  available  "in  stock", the  BRAM  assigned  to  

each  PE,  the  configuration  details  of this  BRAM,  how  often  the  BRAM  is  accessed,  and  how  much 

more  or  less  BRAM  is  required  by  each  PE  at  any  point in  time.  To  keep  the  BRAM  management  

transparent  to  the PEs,  an  address  mapping  scheme  ensures  correct  PE-BRAM association. 
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IV  BRAM  ORGANIZATION  AND  ADDRESS  TRANSLATION  SCHEME 

 

Fig. 2:  Logical to physical address translation scheme of DOMMU 

The set of BRAM elements shown in Fig. 2 and their physical configurations is the BRAM  physical  address  

space, which  is  realized  by  initializing  a  subset  of  the  available BRAM  resources  on  the  device  in  

different  configurations (width  X  depth)  depending  on  the  design  requirements.  

To  provide  transparency  to  the  PEs,  the  BRAM  elements are  also  arranged  in a  logical  address  space,  

in  the  form of  logical  pages.  Concepts  of  logical  addressing  and  paging are  borrowed  from  software  

memory  management  of  operating  systems,  and  employed  similarly  in  the  design  of DOMMU.  Each 

memory port  is  assigned  a  logical  page  which can  be  assigned  up  to  X  BRAM  elements  as  shown  in  

Figure 2.  The  BRAM  elements  are  assigned  a  Logical  Identification (LID)  according  to  their  order of 

assignment  within the  logical page.  These  LIDs  are  assigned  at  run-time  independently  of the  Physical  

ID  (PIDs)  of  the  BRAM  elements  managed  by DOMMU.  Each  memory port  should  "know"  its  logical  

page, its  word  width  and  depth.  Each PE accesses its allocated BRAM by communicating the logical 

addresses via its memory port(s) to the DOMMU. The  logical  address  is  mapped  to  the physical  address  

(BRAM  PID  and  offset  within  the  BRAM element)  to  access  the  correct  data  word. DOMMU  interfaces  

with  the  PEs  via  the  memory  ports shown  in  Fig.  2,  which  introduces  a  degree  of  freedom  to assign  

more than  one  memory port  for  each  PE at  design-time. 
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V ARCHITECTURE OF DOMMU 

 

Fig. 3: Block diagram of DOMMU architecture 

A  detailed  block  diagram  of  DOMMU  and  its  components is  illustrated  in  Fig.  3. 

5.1 Crossbar (XBAR) switch 

The  PE> BRAM  interconnection network  required  in  DOMMU  must  allow  all  PEs  to  be physically  

able  to  access  all  the  configured  BRAM  elements. Bi-directional  communication  is  required  to  support  

both  read and  write  access,  as  well  as  non-blocking  switching  to  ensure that  multiple  simultaneous  PE 

>  BRAM  interconnections can  always  be  established.  The crossbar switch satisfies these requirements.  

The  original  idea  was  to  dynamically  reconfigure  the FPGA  routing  resources  to  implement  the  crossbar  

switch, or  implementing  the  crossbar  multiplexers  using  LUTs  and reconfiguring  their  configuration  

contents  by  bit stream  manipulation  via  internal  dynamic  partial  reconfiguration  of  the corresponding  

FPGA  configuration  frames,  in  order  to control  the  multiplexed  output.  However,  for  ease  of  initial  

implementation  and  proof-of-concept,  the  crossbar  is  implemented  in  this  work  using regular  

multiplexers.  It  is  realized  using  two  crossbars:  a  unidirectional  (PE    BRAM)  crossbar  for  writing  to  

BRAM, and  a  bi-directional  (PE  > BRAM)  crossbar  for  reading from  BRAM. 

 

5.2 Address translator (BRAT) 

The PEs communicate with the BRAMs by logical addresses. Hence, each  memory port  is  assigned  a  BRAM  

Address  Translator  (BRAT),  which performs  the  functionality  described  in  Fig. 2.  
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When  a  read  or  write  access request  is  received through  a memory  port  (orange/dashed  path  in  Fig.  3),  

BRAT  maps this  memory  port  to  the  associated  logical  page  by  queuing  an array  which  maps  each  port  

to  its  corresponding  logical  page and  the  allowed  access  credentials  (RD,  WR,  or  RDIWR)  of this  

memory  port  to  this  page.  If  the  address  is  out-of-bounds or involves  illegal  access,  the  incoming  

address  is  rejected,  and the  PE  is  flagged  for  requesting  an  illegal  access.  This  feature enforces  implicit  

memory access  rights  to  ensure  that  each  PE can  only  access  its  assigned  memory.  

BRAT also  receives incoming control  requests  from  a controller  to  update  its  stored  arrays  for  new  

(de)allocations. ACKINACK  message  reporting  the  status  and  details  of  each request  is  returned  to  the  

controller.  Errors  such  as a  full logical  page  that  cannot be allocated  more BRAM or  an  empty page  that  

cannot  be  (de)allocated  from  are  handled  by  returning the  corresponding  NACK  message  back  to  the  

controller. In  general,  all  incoming  control  requests  are  acknowledged with  ACKINACK  response  

messages  communicated  to  the controller  which  indicate  the  details  of  status  of  the  request. BRA T also 

keeps track  of the  logical  page associated  with each memory  port,  and  the  details  of  each  logical  page,  

such  as  its access  credentials,  word  width,  allowed  maximum  and  actual depth.  All  details  about  the  

BRAM  elements assigned  to  each page  are also  stored  to  ensure  correct  PE-BRAM  association, correct  

logical-to-physical  address  mapping,  and  detection  of illegal  accesses. 

5.3 Arbiter- Arbitration  using  adaptive,  dynamic  and  user configurable  priorities  was  implemented,  

since  this  was  most suited  for  dynamic  reconfigurable  systems.  The  scheduling priorities  associated  with  

these  PEs  are  dynamic  and  can change  at  run-time.  Every  memory  port  is  assigned  a  priority, which  is  

one  of  the  three  levels:  low,  medium  or  high,  and this  priority  level  is  assigned  as  static  or  dynamic  

either  at design-time  or  run-time.  A  static  priority  maintains  its  default value throughout  operation,  unless 

it  gets re-assigned  explicitly by  the  PE.  At  every  clock  cycle,  all  incoming  requests  from all  memory  

ports  are  read  and  arbitration  selects  the  request to  serve.  If  the  waiting  time  of  a  request  exceeds  a  

userconfigured  threshold  and  if  the  priority  of that  port  is  dynamic, then  the  corresponding  priority  is  

upgraded  to  the  next  level. The  dynamic  priority  of  a  memory  port  also  gets  downgraded if  its  pending  

request  gets  served,  and  its  request  waiting  time is  smaller  than  a  user-configured  threshold.  

Configurable  and dynamic  priority  arbitration  is  suitable  for  real-time  embedded systems  in  which  some  

running  applications  are  more  time critical  than  others,  and  scheduling  priorities  can  be  adjusted 

accordingly. Hierarchical arbitration is  implemented in  which higher priority  is  always  reserved  for  all  

allocation  requests  followed  by a  lower priority for  all (de)allocation requestsbecause  allocation requests  are  

more  critical  to  the  PE.  Within  every  level  of hierarchy,  the  assigned  priorities  are  examined  to  

schedule  the highest priority request to be first served.  Latency overhead due to  arbitration  is  unavoidable yet 

critical,  since  it  is a  significant factor  in  the  latency  incurred  in  serving  memory  allocation requests,  

which  is  crucial  for  scheduling  memory  requests associated  with  real-time  applications.  Arbitration  

latency  has a  deterministic  maximum  which  is a  function  of  the  number of  PE  memory  ports  configured  

and  the  maximum  number of  BRAM  elements  that  can  be  requested  at  one  time  by any  memory  port.  

This  latency  should  be  considered  when scheduling BRAM allocation requests,  and is guaranteed,  when 

dynamic  automated  BRAM  allocation  is  enabled,  to  remain below  the  first  access  of  the  PE  to  the  
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requested  BRAM. This  overhead  can  be  reduced  by  minimizing  the  arbiter  logic and  dynamism.  

Moreover,  more  aggressive  pipelining  can  be attempted  in  order  to  serve  multiple  BRAM  requests  at  

one time,  although  in  the  current  architecture  design  this  would result  in  inconsistencies  in  shared  data  

arrays.  

5.4 Memory Port Manager 

Each  PE  memory  port  that interfaces  with DOMMU consists of a dedicated BRAM access port  and  a  

control  port  for  (de)allocation  control  requests. The BRAM access port constitutes of two independent ports. 

Data  can  be  read  from  or  written  to  one  or  both  of  them simultaneously  which  enables  access  of  

single-port  BRAM as  well  as  dual-port  BRAM  for  double  the  bandwidth,  and supports  inter-PE  

communication,  which  is  often  required  in real-time  image  processing  applications.  If a PE requires more 

BRAM bandwidth, additional memory ports can be configured for it.  The  control  port  is  assigned  a  memory  

port  manager which  matches  the  requested  BRAM  type,  word  width,  and number  of  words  to  the  

closest  BRAM  configuration (width X  depth)  available.  This  ensures  that  the  internal  BRAM 

management  and  configuration  details  remain  transparent  to the  PE.  Since  this  mapping  is  embedded  

and  time-critical, and  has  to  occur  with  minimal  impact  on  timing  performance and  area  overhead,  this  

limits  the  maximum  complexity  of the  methodology  and  logic  implemented.  There  is  no  optimal 

resolution  to  this  mapping  problem  due  to  the  different  optimization  factors  that  can  be  considered  

such  as  speed,  power or  area  utilization.  Themethodology implemented in this work selects the match that 

minimizes in the  number of BRAM elements  assigned.  

Automated  dynamic  (de)allocation  of  BRAM  is  one  of  the distinguishing  features  of  DOMMU.  This  

allows  additional BRAM  to  be  requested  for  allocation  automatically  when  the assigned  BRAM  for  the  

memory  port  is  close  to  running  out. This  is  indicated  when  the  number  of  BRAM  addresses  that get  

written  to,  increase  beyond  a  user-configured  threshold. If the assigned BRAM remains idle.  Dynamic 

(de)allocation can be enabled or disabled by each port manager at run-time according to the application 

requirements.  This feature  is  based  upon  several  simplifying  assumptions  that every  incoming  read/write  

access  is a  valid  one,  that  every incoming  write access is  associated with a new BRAM address, and  that  

when  the  number  of  idle  cycles  exceeds  a  certain threshold,  that  this  BRAM is  not  required  by  the  

memory port anymore,  and  should  be  (de)allocated. 

The  currently  supported  control  requests  a  PE  can  issue via  a  memory  port  to  its  memory  port  

manager  are  allocating a  new  single-port  or  shared  BRAM  logical  page,  (de)allocating a  BRAM  logical  

page,  or  a  requested  number  of  words  from a  logical  page,  or  assigning  a  new  priority  to  the  

concerned memory port.  The parameters required for  each  request  depend on  the  request  code  issued,  and  

each  request  is  acknowledged by  a  response  message  which  indicates  the  details  of  the granted/denied  

request. 
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VI CONCLUSION 

In  this  paper,  a  Dynamic  On-chip  Memory  Management Unit  (DOMMU)  is  proposed  to  support  

dynamic  BRAM sharing  among  several  processing  elements  in  FPGA-based dynamic  reconfigurable  

architectures,  such  that  the  BRAM allocation  and  utilization  adapt  to  the  variable  run-time  memory  

footprints  of  the  PEs.  A  dynamic  fine-grain  control  of BRAM (de)allocation,  as  opposed  to  previous  

static  traditional approaches  is  introduced,  as  well  as a  virtual  BRAM  addressing  scheme,  and  an  

automated  dynamic memory  (de)allocation algorithm,  thus  making  DOMMU  superior  to  previous  

architectures  in  terms  of  scalability,  flexibility  and  its  usability  for reconfigurable  computing  in  

particular. 
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